欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

nosql數(shù)據(jù)安全性,nosql的數(shù)據(jù)安全性很強(qiáng)

簡(jiǎn)答大數(shù)據(jù)安全的特征?

大數(shù)據(jù)安全面臨著許多挑戰(zhàn),需要通過(guò)研究關(guān)鍵技術(shù)、制定安全管理策略來(lái)應(yīng)對(duì)這些挑戰(zhàn)。當(dāng)前,大數(shù)據(jù)的應(yīng)用和發(fā)展面臨著許多安全問(wèn)題,具體來(lái)說(shuō)有以下幾個(gè)方面。(1)大數(shù)據(jù)成為網(wǎng)絡(luò)攻擊的顯著目標(biāo)在網(wǎng)絡(luò)空間中,大數(shù)據(jù)是更容易被“發(fā)現(xiàn)”的大目標(biāo),承載著越來(lái)越多的關(guān)注度。一方面,大數(shù)據(jù)不僅意味著海量的數(shù)據(jù),也意味著更復(fù)雜、更敏感的數(shù)據(jù),這些數(shù)據(jù)會(huì)吸引更多的潛在攻擊者,成為更具吸引力的目標(biāo);另一方面,數(shù)據(jù)的大量聚集,使黑客一次成功的攻擊能夠獲得更多的數(shù)據(jù),無(wú)形中降低了黑客的進(jìn)攻成本,增加了“收益率”。(2)大數(shù)據(jù)加大隱私泄露風(fēng)險(xiǎn)從基礎(chǔ)技術(shù)角度看,Hadoop對(duì)數(shù)據(jù)的聚合增加了數(shù)據(jù)泄露的風(fēng)險(xiǎn)。作為一個(gè)分布式系統(tǒng)架構(gòu),Hadoop可以用來(lái)應(yīng)對(duì)PB甚至ZB級(jí)的海量數(shù)據(jù)存儲(chǔ);作為一個(gè)云化的平臺(tái),Hadoop自身存在云計(jì)算面臨的安全風(fēng)險(xiǎn),企業(yè)需要實(shí)施安全訪問(wèn)機(jī)制和數(shù)據(jù)保護(hù)機(jī)制。同樣,大數(shù)據(jù)依托的基礎(chǔ)技術(shù)——NoSQL(非關(guān)系型數(shù)據(jù)庫(kù))與當(dāng)前廣泛應(yīng)用的SQL(關(guān)系型數(shù)據(jù)庫(kù))技術(shù)不同,沒有經(jīng)過(guò)長(zhǎng)期改進(jìn)和完善,在維護(hù)數(shù)據(jù)安全方面也未設(shè)置嚴(yán)格的訪問(wèn)控制和隱私管理機(jī)制。NoSQL技術(shù)還因大數(shù)據(jù)中數(shù)據(jù)來(lái)源和承載方式的多樣性,使企業(yè)很難定位和保護(hù)其中的機(jī)密信息,這是NoSQL內(nèi)在安全機(jī)制的不完善,即缺乏機(jī)密性和完整性。另外,NoSQL對(duì)來(lái)自不同系統(tǒng)、不同應(yīng)用程序及不同活動(dòng)的數(shù)據(jù)進(jìn)行關(guān)聯(lián),也加大了隱私泄露的風(fēng)險(xiǎn)。此外,NoSQL還允許不斷對(duì)數(shù)據(jù)記錄添加屬性,這也對(duì)數(shù)據(jù)庫(kù)管理員的安全性預(yù)見能力提出了更高的要求。從核心價(jià)值角度看,大數(shù)據(jù)的技術(shù)關(guān)鍵在于數(shù)據(jù)分析和利用,但數(shù)據(jù)分析技術(shù)的發(fā)展,勢(shì)必對(duì)用戶隱私產(chǎn)生極大威脅。

在羅田等地區(qū),都構(gòu)建了全面的區(qū)域性戰(zhàn)略布局,加強(qiáng)發(fā)展的系統(tǒng)性、市場(chǎng)前瞻性、產(chǎn)品創(chuàng)新能力,以專注、極致的服務(wù)理念,為客戶提供成都做網(wǎng)站、網(wǎng)站設(shè)計(jì) 網(wǎng)站設(shè)計(jì)制作定制制作,公司網(wǎng)站建設(shè),企業(yè)網(wǎng)站建設(shè),成都品牌網(wǎng)站建設(shè),網(wǎng)絡(luò)營(yíng)銷推廣,成都外貿(mào)網(wǎng)站建設(shè),羅田網(wǎng)站建設(shè)費(fèi)用合理。

保護(hù)大數(shù)據(jù)安全的10個(gè)要點(diǎn)

一項(xiàng)對(duì)2021年數(shù)據(jù)泄露的分析顯示,總共有50億份數(shù)據(jù)被泄露,這對(duì)所有參與大數(shù)據(jù)管道工作的人來(lái)說(shuō),從開發(fā)人員到DevOps工程師,安全性與基礎(chǔ)業(yè)務(wù)需求同等重要。

大數(shù)據(jù)安全是指在存儲(chǔ)、處理和分析過(guò)于龐大和復(fù)雜的數(shù)據(jù)集時(shí),采用任何措施來(lái)保護(hù)數(shù)據(jù)免受惡意活動(dòng)的侵害,傳統(tǒng)數(shù)據(jù)庫(kù)應(yīng)用程序無(wú)法處理這些數(shù)據(jù)集。大數(shù)據(jù)可以混合結(jié)構(gòu)化格式(組織成包含數(shù)字、日期等的行和列)或非結(jié)構(gòu)化格式(社交媒體數(shù)據(jù)、PDF 文件、電子郵件、圖像等)。不過(guò),估計(jì)顯示高達(dá)90%的大數(shù)據(jù)是非結(jié)構(gòu)化的。

大數(shù)據(jù)的魅力在于,它通常包含一些隱藏的洞察力,可以改善業(yè)務(wù)流程,推動(dòng)創(chuàng)新,或揭示未知的市場(chǎng)趨勢(shì)。由于分析這些信息的工作負(fù)載通常會(huì)將敏感的客戶數(shù)據(jù)或?qū)S袛?shù)據(jù)與第三方數(shù)據(jù)源結(jié)合起來(lái),因此數(shù)據(jù)安全性至關(guān)重要。聲譽(yù)受損和巨額經(jīng)濟(jì)損失是大數(shù)據(jù)泄露和數(shù)據(jù)被破壞的兩大主要后果。

在確保大數(shù)據(jù)安全時(shí),需要考慮三個(gè)關(guān)鍵階段:

當(dāng)數(shù)據(jù)從源位置移動(dòng)到存儲(chǔ)或?qū)崟r(shí)攝取(通常在云中)時(shí),確保數(shù)據(jù)的傳輸

保護(hù)大數(shù)據(jù)管道的存儲(chǔ)層中的數(shù)據(jù)(例如Hadoop分布式文件系統(tǒng))

確保輸出數(shù)據(jù)的機(jī)密性,例如報(bào)告和儀表板,這些數(shù)據(jù)包含通過(guò)Apache Spark等分析引擎運(yùn)行數(shù)據(jù)收集的情報(bào)

這些環(huán)境中的安全威脅類型包括不適當(dāng)?shù)脑L問(wèn)控制、分布式拒絕服務(wù)(DDoS)攻擊、產(chǎn)生虛假或惡意數(shù)據(jù)的端點(diǎn),或在大數(shù)據(jù)工作期間使用的庫(kù)、框架和應(yīng)用程序的漏洞。

由于所涉及的架構(gòu)和環(huán)境復(fù)雜性,大數(shù)據(jù)安全面臨著許多挑戰(zhàn)。在大數(shù)據(jù)環(huán)境中,不同的硬件和技術(shù)在分布式計(jì)算環(huán)境中相互作用。比如:

像Hadoop這樣的開源框架在設(shè)計(jì)之初并沒有考慮到安全性

依賴分布式計(jì)算來(lái)處理這些大型數(shù)據(jù)集意味著有更多的系統(tǒng)可能出錯(cuò)

確保從端點(diǎn)收集的日志或事件數(shù)據(jù)的有效性和真實(shí)性

控制內(nèi)部人員對(duì)數(shù)據(jù)挖掘工具的訪問(wèn),監(jiān)控可疑行為

運(yùn)行標(biāo)準(zhǔn)安全審計(jì)的困難

保護(hù)非關(guān)系NoSQL數(shù)據(jù)庫(kù)

這些挑戰(zhàn)是對(duì)保護(hù)任何類型數(shù)據(jù)的常見挑戰(zhàn)的補(bǔ)充。

靜態(tài)數(shù)據(jù)和傳輸中數(shù)據(jù)的可擴(kuò)展加密對(duì)于跨大數(shù)據(jù)管道實(shí)施至關(guān)重要。可擴(kuò)展性是這里的關(guān)鍵點(diǎn),因?yàn)槌薔oSQL等存儲(chǔ)格式之外,需要跨分析工具集及其輸出加密數(shù)據(jù)。加密的作用在于,即使威脅者設(shè)法攔截?cái)?shù)據(jù)包或訪問(wèn)敏感文件,實(shí)施良好的加密過(guò)程也會(huì)使數(shù)據(jù)不可讀。

獲得訪問(wèn)控制權(quán)可針對(duì)一系列大數(shù)據(jù)安全問(wèn)題提供強(qiáng)大的保護(hù),例如內(nèi)部威脅和特權(quán)過(guò)剩。基于角色的訪問(wèn)可以幫助控制對(duì)大數(shù)據(jù)管道多層的訪問(wèn)。例如,數(shù)據(jù)分析師可以訪問(wèn)分析工具,但他們可能不應(yīng)該訪問(wèn)大數(shù)據(jù)開發(fā)人員使用的工具,如ETL軟件。最小權(quán)限原則是訪問(wèn)控制的一個(gè)很好的參考點(diǎn),它限制了對(duì)執(zhí)行用戶任務(wù)所必需的工具和數(shù)據(jù)的訪問(wèn)。

大數(shù)據(jù)工作負(fù)載所需要的固有的大存儲(chǔ)容量和處理能力使得大多數(shù)企業(yè)可以為大數(shù)據(jù)使用云計(jì)算基礎(chǔ)設(shè)施和服務(wù)。但是,盡管云計(jì)算很有吸引力,暴露的API密鑰、令牌和錯(cuò)誤配置都是云中值得認(rèn)真對(duì)待的風(fēng)險(xiǎn)。如果有人讓S3中的AWS數(shù)據(jù)湖完全開放,并且對(duì)互聯(lián)網(wǎng)上的任何人都可以訪問(wèn),那會(huì)怎么樣?有了自動(dòng)掃描工具,可以快速掃描公共云資產(chǎn)以尋找安全盲點(diǎn),從而更容易降低這些風(fēng)險(xiǎn)。

在復(fù)雜的大數(shù)據(jù)生態(tài)系統(tǒng)中,加密的安全性需要一種集中的密鑰管理方法,以確保對(duì)加密密鑰進(jìn)行有效的策略驅(qū)動(dòng)處理。集中式密鑰管理還可以控制從創(chuàng)建到密鑰輪換的密鑰治理。對(duì)于在云中運(yùn)行大數(shù)據(jù)工作負(fù)載的企業(yè),自帶密鑰 (BYOK) 可能是允許集中密鑰管理而不將加密密鑰創(chuàng)建和管理的控制權(quán)交給第三方云提供商的最佳選擇。

在大數(shù)據(jù)管道中,由于數(shù)據(jù)來(lái)自許多不同的來(lái)源,包括來(lái)自社交媒體平臺(tái)的流數(shù)據(jù)和來(lái)自用戶終端的數(shù)據(jù),因此會(huì)有持續(xù)的流量。網(wǎng)絡(luò)流量分析提供了對(duì)網(wǎng)絡(luò)流量和任何潛在異常的可見性,例如來(lái)自物聯(lián)網(wǎng)設(shè)備的惡意數(shù)據(jù)或正在使用的未加密通信協(xié)議。

2021年的一份報(bào)告發(fā)現(xiàn),98%的組織感到容易受到內(nèi)部攻擊。在大數(shù)據(jù)的背景下,內(nèi)部威脅對(duì)敏感公司信息的機(jī)密性構(gòu)成嚴(yán)重風(fēng)險(xiǎn)。有權(quán)訪問(wèn)分析報(bào)告和儀表板的惡意內(nèi)部人員可能會(huì)向競(jìng)爭(zhēng)對(duì)手透露見解,甚至提供他們的登錄憑據(jù)進(jìn)行銷售。從內(nèi)部威脅檢測(cè)開始的一個(gè)好地方是檢查常見業(yè)務(wù)應(yīng)用程序的日志,例如 RDP、VPN、Active Directory 和端點(diǎn)。這些日志可以揭示值得調(diào)查的異常情況,例如意外的數(shù)據(jù)下載或異常的登錄時(shí)間。

威脅搜尋主動(dòng)搜索潛伏在您的網(wǎng)絡(luò)中未被發(fā)現(xiàn)的威脅。這個(gè)過(guò)程需要經(jīng)驗(yàn)豐富的網(wǎng)絡(luò)安全分析師的技能組合,利用來(lái)自現(xiàn)實(shí)世界的攻擊、威脅活動(dòng)的情報(bào)或來(lái)自不同安全工具的相關(guān)發(fā)現(xiàn)來(lái)制定關(guān)于潛在威脅的假設(shè)。具有諷刺意味的是,大數(shù)據(jù)實(shí)際上可以通過(guò)發(fā)現(xiàn)大量安全數(shù)據(jù)中隱藏的洞察力來(lái)幫助改進(jìn)威脅追蹤工作。但作為提高大數(shù)據(jù)安全性的一種方式,威脅搜尋會(huì)監(jiān)控?cái)?shù)據(jù)集和基礎(chǔ)設(shè)施,以尋找表明大數(shù)據(jù)環(huán)境受到威脅的工件。

出于安全目的監(jiān)視大數(shù)據(jù)日志和工具會(huì)產(chǎn)生大量信息,這些信息通常最終形成安全信息和事件管理(SIEM)解決方案。

用戶行為分析比內(nèi)部威脅檢測(cè)更進(jìn)一步,它提供了專門的工具集來(lái)監(jiān)控用戶在與其交互的系統(tǒng)上的行為。通常情況下,行為分析使用一個(gè)評(píng)分系統(tǒng)來(lái)創(chuàng)建正常用戶、應(yīng)用程序和設(shè)備行為的基線,然后在這些基線出現(xiàn)偏差時(shí)進(jìn)行提醒。通過(guò)用戶行為分析,可以更好地檢測(cè)威脅大數(shù)據(jù)環(huán)境中資產(chǎn)的保密性、完整性或可用性的內(nèi)部威脅和受損的用戶帳戶。

未經(jīng)授權(quán)的數(shù)據(jù)傳輸?shù)那熬白尠踩I(lǐng)導(dǎo)者徹夜難眠,特別是如果數(shù)據(jù)泄露發(fā)生在可以復(fù)制大量潛在敏感資產(chǎn)的大數(shù)據(jù)管道中。檢測(cè)數(shù)據(jù)泄露需要對(duì)出站流量、IP地址和流量進(jìn)行深入監(jiān)控。防止數(shù)據(jù)泄露首先來(lái)自于在代碼和錯(cuò)誤配置中發(fā)現(xiàn)有害安全錯(cuò)誤的工具,以及數(shù)據(jù)丟失預(yù)防和下一代防火墻。另一個(gè)重要方面是在企業(yè)內(nèi)進(jìn)行教育和提高認(rèn)識(shí)。

框架、庫(kù)、軟件實(shí)用程序、數(shù)據(jù)攝取、分析工具和自定義應(yīng)用程序——大數(shù)據(jù)安全始于代碼級(jí)別。 無(wú)論是否實(shí)施了上述公認(rèn)的安全實(shí)踐,代碼中的安全缺陷都可能導(dǎo)致數(shù)據(jù)泄漏。 通過(guò)在軟件開發(fā)生命周期中檢測(cè)自研代碼及開源組件成分的安全性,加強(qiáng)軟件安全性來(lái)防止數(shù)據(jù)丟失。

NoSQL 會(huì)有注入問(wèn)題嗎?

只要有交叉,通常而言都會(huì)有注入漏洞的。只是對(duì)于漏洞,你大可放心,應(yīng)為一般而言注入提權(quán)都是針對(duì)常用的熱門數(shù)據(jù)庫(kù)和已知漏洞進(jìn)行的,對(duì)于新興的沒有大規(guī)模使用的數(shù)據(jù)庫(kù)來(lái)說(shuō),沒有太多人花很多時(shí)間去研究,只要沒大規(guī)模傳播擴(kuò)散漏洞信息,即使是有,也比較安全的。總不可能有人就專盯你的數(shù)據(jù)庫(kù)入侵提權(quán)吧

什么是NoSQL,它有什么優(yōu)缺點(diǎn)?

NoSQL,指的是非關(guān)系型的數(shù)據(jù)庫(kù)。NoSQL有時(shí)也稱作Not Only SQL的縮寫,是對(duì)不同于傳統(tǒng)的關(guān)系型數(shù)據(jù)庫(kù)的數(shù)據(jù)庫(kù)管理系統(tǒng)的統(tǒng)稱。

NoSQL用于超大規(guī)模數(shù)據(jù)的存儲(chǔ)。(例如谷歌或Facebook每天為他們的用戶收集萬(wàn)億比特的數(shù)據(jù))。這些類型的數(shù)據(jù)存儲(chǔ)不需要固定的模式,無(wú)需多余操作就可以橫向擴(kuò)展。

NoSQL的優(yōu)點(diǎn)/缺點(diǎn)

優(yōu)點(diǎn):

- 高可擴(kuò)展性

- 分布式計(jì)算

- 低成本

- 架構(gòu)的靈活性,半結(jié)構(gòu)化數(shù)據(jù)

- 沒有復(fù)雜的關(guān)系

缺點(diǎn):

- 沒有標(biāo)準(zhǔn)化

- 有限的查詢功能(到目前為止)

- 最終一致是不直觀的程序 (BY三人行慕課)

目前哪些NoSQL數(shù)據(jù)庫(kù)應(yīng)用廣泛,各有什么特點(diǎn)

特點(diǎn):

它們可以處理超大量的數(shù)據(jù)。

它們運(yùn)行在便宜的PC服務(wù)器集群上。

PC集群擴(kuò)充起來(lái)非常方便并且成本很低,避免了“sharding”操作的復(fù)雜性和成本。

它們擊碎了性能瓶頸。

NoSQL的支持者稱,通過(guò)NoSQL架構(gòu)可以省去將Web或Java應(yīng)用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時(shí)間,執(zhí)行速度變得更快。

“SQL并非適用于所有的程序代碼,” 對(duì)于那些繁重的重復(fù)操作的數(shù)據(jù),SQL值得花錢。但是當(dāng)數(shù)據(jù)庫(kù)結(jié)構(gòu)非常簡(jiǎn)單時(shí),SQL可能沒有太大用處。

沒有過(guò)多的操作。

雖然NoSQL的支持者也承認(rèn)關(guān)系數(shù)據(jù)庫(kù)提供了無(wú)可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對(duì)穩(wěn)定,他們同時(shí)也表示,企業(yè)的具體需求可能沒有那么多。

Bootstrap支持

因?yàn)镹oSQL項(xiàng)目都是開源的,因此它們?nèi)狈?yīng)商提供的正式支持。這一點(diǎn)它們與大多數(shù)開源項(xiàng)目一樣,不得不從社區(qū)中尋求支持。

優(yōu)點(diǎn):

易擴(kuò)展

NoSQL數(shù)據(jù)庫(kù)種類繁多,但是一個(gè)共同的特點(diǎn)都是去掉關(guān)系數(shù)據(jù)庫(kù)的關(guān)系型特性。數(shù)據(jù)之間無(wú)關(guān)系,這樣就非常容易擴(kuò)展。也無(wú)形之間,在架構(gòu)的層面上帶來(lái)了可擴(kuò)展的能力。

大數(shù)據(jù)量,高性能

NoSQL數(shù)據(jù)庫(kù)都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無(wú)關(guān)系性,數(shù)據(jù)庫(kù)的結(jié)構(gòu)簡(jiǎn)單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對(duì)web2.0的交互頻繁的應(yīng)用,Cache性能不高。而NoSQL的 Cache是記錄級(jí)的,是一種細(xì)粒度的Cache,所以NoSQL在這個(gè)層面上來(lái)說(shuō)就要性能高很多了。

靈活的數(shù)據(jù)模型

NoSQL無(wú)需事先為要存儲(chǔ)的數(shù)據(jù)建立字段,隨時(shí)可以存儲(chǔ)自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫(kù)里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡(jiǎn)直就是一個(gè)噩夢(mèng)。這點(diǎn)在大數(shù)據(jù)量的web2.0時(shí)代尤其明顯。

高可用

NoSQL在不太影響性能的情況,就可以方便的實(shí)現(xiàn)高可用的架構(gòu)。比如Cassandra,HBase模型,通過(guò)復(fù)制模型也能實(shí)現(xiàn)高可用。

主要應(yīng)用:

Apache HBase

這個(gè)大數(shù)據(jù)管理平臺(tái)建立在谷歌強(qiáng)大的BigTable管理引擎基礎(chǔ)上。作為具有開源、Java編碼、分布式多個(gè)優(yōu)勢(shì)的數(shù)據(jù)庫(kù),Hbase最初被設(shè)計(jì)應(yīng)用于Hadoop平臺(tái),而這一強(qiáng)大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺(tái)的龐大數(shù)據(jù)。

Apache Storm

用于處理高速、大型數(shù)據(jù)流的分布式實(shí)時(shí)計(jì)算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實(shí)時(shí)數(shù)據(jù)處理功能,同時(shí)還增加了低延遲的儀表板、安全警報(bào),改進(jìn)了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機(jī)會(huì)、發(fā)展新業(yè)務(wù)。

Apache Spark

該技術(shù)采用內(nèi)存計(jì)算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復(fù)查詢,此外還融合數(shù)據(jù)倉(cāng)庫(kù)、流處理和圖計(jì)算等多種計(jì)算范式,Spark用Scala語(yǔ)言實(shí)現(xiàn),構(gòu)建在HDFS上,能與Hadoop很好的結(jié)合,而且運(yùn)行速度比MapReduce快100倍。

Apache Hadoop

該技術(shù)迅速成為了大數(shù)據(jù)管理標(biāo)準(zhǔn)之一。當(dāng)它被用來(lái)管理大型數(shù)據(jù)集時(shí),對(duì)于復(fù)雜的分布式應(yīng)用,Hadoop體現(xiàn)出了非常好的性能,平臺(tái)的靈活性使它可以運(yùn)行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構(gòu)化、半結(jié)構(gòu)化和甚至非結(jié)構(gòu)化數(shù)據(jù)集。

Apache Drill

你有多大的數(shù)據(jù)集?其實(shí)無(wú)論你有多大的數(shù)據(jù)集,Drill都能輕松應(yīng)對(duì)。通過(guò)支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺(tái),允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。

Apache Sqoop

也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個(gè)問(wèn)題。這一平臺(tái)采用并發(fā)連接,可以將數(shù)據(jù)從關(guān)系數(shù)據(jù)庫(kù)系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類型以及元數(shù)據(jù)傳播的映射。事實(shí)上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導(dǎo)入到HDFS、Hive和Hbase中。

Apache Giraph

這是功能強(qiáng)大的圖形處理平臺(tái),具有很好可擴(kuò)展性和可用性。該技術(shù)已經(jīng)被Facebook采用,Giraph可以運(yùn)行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過(guò)這種方式,你可以得到強(qiáng)大的分布式作圖能力,同時(shí)還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。

Cloudera Impala

Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢。該技術(shù)和MapReduce一樣,具有強(qiáng)大的批處理能力,而且Impala對(duì)于實(shí)時(shí)的SQL查詢也有很好的效果,通過(guò)高效的SQL查詢,你可以很快的了解到大數(shù)據(jù)平臺(tái)上的數(shù)據(jù)。

Gephi

它可以用來(lái)對(duì)信息進(jìn)行關(guān)聯(lián)和量化處理,通過(guò)為數(shù)據(jù)創(chuàng)建功能強(qiáng)大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個(gè)圖表類型,而且可以在具有上百萬(wàn)個(gè)節(jié)點(diǎn)的大型網(wǎng)絡(luò)上運(yùn)行。Gephi具有活躍的用戶社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對(duì)復(fù)雜的IT連接、分布式系統(tǒng)中各個(gè)節(jié)點(diǎn)、數(shù)據(jù)流等信息進(jìn)行可視化分析。

MongoDB

這個(gè)堅(jiān)實(shí)的平臺(tái)一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術(shù)已經(jīng)被廣泛的應(yīng)用于大數(shù)據(jù)管理。MongoDB是一個(gè)應(yīng)用開源技術(shù)開發(fā)的NoSQL數(shù)據(jù)庫(kù),可以用于在JSON這樣的平臺(tái)上存儲(chǔ)和處理數(shù)據(jù)。目前,紐約時(shí)報(bào)、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務(wù)器也作為一個(gè)參考)。

十大頂尖公司:

Amazon Web Services

Forrester將AWS稱為“云霸主”,談到云計(jì)算領(lǐng)域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術(shù)來(lái)提供大數(shù)據(jù)管理服務(wù),但它不是純開源Hadoop,經(jīng)過(guò)修改后現(xiàn)在被專門用在AWS云上。

Forrester稱EMR有很好的市場(chǎng)前景。很多公司基于EMR為客戶提供服務(wù),有一些公司將EMR應(yīng)用于數(shù)據(jù)查詢、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱未來(lái)EMR可以基于工作量的需要自動(dòng)縮放調(diào)整大小。亞馬遜計(jì)劃為其產(chǎn)品和服務(wù)提供更強(qiáng)大的EMR支持,包括它的RedShift數(shù)據(jù)倉(cāng)庫(kù)、新公布的Kenesis實(shí)時(shí)處理引擎以及計(jì)劃中的NoSQL數(shù)據(jù)庫(kù)和商業(yè)智能工具。不過(guò)AWS還沒有自己的Hadoop發(fā)行版。

Cloudera

Cloudera有開源Hadoop的發(fā)行版,這個(gè)發(fā)行版采用了Apache Hadoop開源項(xiàng)目的很多技術(shù),不過(guò)基于這些技術(shù)的發(fā)行版也有很大的進(jìn)步。Cloudera為它的Hadoop發(fā)行版開發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開源Hadoop,但也不是純開源的產(chǎn)品。當(dāng)Cloudera的客戶需要Hadoop不具備的某些功能時(shí),Cloudera的工程師們就會(huì)實(shí)現(xiàn)這些功能,或者找一個(gè)擁有這項(xiàng)技術(shù)的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因?yàn)槠淇蓪?shí)現(xiàn)快速創(chuàng)新并積極滿足客戶需求,這一點(diǎn)使它不同于其他那些供應(yīng)商。”目前,Cloudera的平臺(tái)已經(jīng)擁有200多個(gè)付費(fèi)客戶,一些客戶在Cloudera的技術(shù)支持下已經(jīng)可以跨1000多個(gè)節(jié)點(diǎn)實(shí)現(xiàn)對(duì)PB級(jí)數(shù)據(jù)的有效管理。

Hortonworks

和Cloudera一樣,Hortonworks是一個(gè)純粹的Hadoop技術(shù)公司。與Cloudera不同的是,Hortonworks堅(jiān)信開源Hadoop比任何其他供應(yīng)商的Hadoop發(fā)行版都要強(qiáng)大。Hortonworks的目標(biāo)是建立Hadoop生態(tài)圈和Hadoop用戶社區(qū),推進(jìn)開源項(xiàng)目的發(fā)展。Hortonworks平臺(tái)和開源Hadoop聯(lián)系緊密,公司管理人員表示這會(huì)給用戶帶來(lái)好處,因?yàn)樗梢苑乐贡还?yīng)商套牢(如果Hortonworks的客戶想要離開這個(gè)平臺(tái),他們可以輕松轉(zhuǎn)向其他開源平臺(tái))。這并不是說(shuō)Hortonworks完全依賴開源Hadoop技術(shù),而是因?yàn)樵摴緦⑵渌虚_發(fā)的成果回報(bào)給了開源社區(qū),比如Ambari,這個(gè)工具就是由Hortonworks開發(fā)而成,用來(lái)填充集群管理項(xiàng)目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應(yīng)商的支持。

IBM

當(dāng)企業(yè)考慮一些大的IT項(xiàng)目時(shí),很多人首先會(huì)想到IBM。IBM是Hadoop項(xiàng)目的主要參與者之一,F(xiàn)orrester稱IBM已有100多個(gè)Hadoop部署,它的很多客戶都有PB級(jí)的數(shù)據(jù)。IBM在網(wǎng)格計(jì)算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項(xiàng)目實(shí)施等眾多領(lǐng)域有著豐富的經(jīng)驗(yàn)。“IBM計(jì)劃繼續(xù)整合SPSS分析、高性能計(jì)算、BI工具、數(shù)據(jù)管理和建模、應(yīng)對(duì)高性能計(jì)算的工作負(fù)載管理等眾多技術(shù)。”

Intel

和AWS類似,英特爾不斷改進(jìn)和優(yōu)化Hadoop使其運(yùn)行在自己的硬件上,具體來(lái)說(shuō),就是讓Hadoop運(yùn)行在其至強(qiáng)芯片上,幫助用戶打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個(gè)產(chǎn)品,所以公司在未來(lái)還有很多改進(jìn)的可能,英特爾和微軟都被認(rèn)為是Hadoop市場(chǎng)上的潛力股。

MapR Technologies

MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過(guò)很多人可能都沒有聽說(shuō)過(guò)。Forrester對(duì)Hadoop用戶的調(diào)查顯示,MapR的評(píng)級(jí)最高,其發(fā)行版在架構(gòu)和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡(luò)文件系統(tǒng)(NFS)、災(zāi)難恢復(fù)以及高可用性功能。Forrester說(shuō)MapR在Hadoop市場(chǎng)上沒有Cloudera和Hortonworks那樣的知名度,MapR要成為一個(gè)真正的大企業(yè),還需要加強(qiáng)伙伴關(guān)系和市場(chǎng)營(yíng)銷。

Microsoft

微軟在開源軟件問(wèn)題上一直很低調(diào),但在大數(shù)據(jù)形勢(shì)下,它不得不考慮讓W(xué)indows也兼容Hadoop,它還積極投入到開源項(xiàng)目中,以更廣泛地推動(dòng)Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務(wù)基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。

微軟也有一些其他的項(xiàng)目,包括名為Polybase的項(xiàng)目,讓Hadoop查詢實(shí)現(xiàn)了SQLServer查詢的一些功能。Forrester說(shuō):“微軟在數(shù)據(jù)庫(kù)、數(shù)據(jù)倉(cāng)庫(kù)、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開發(fā)工具市場(chǎng)上有很大優(yōu)勢(shì),而且微軟擁有龐大的用戶群,但要在Hadoop這個(gè)領(lǐng)域成為行業(yè)領(lǐng)導(dǎo)者還有很遠(yuǎn)的路要走。”

Pivotal Software

EMC和Vmware部分大數(shù)據(jù)業(yè)務(wù)分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構(gòu)建一個(gè)性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開源Hadoop的基礎(chǔ)上又添加了一些新的工具,包括一個(gè)名為HAWQ的SQL引擎以及一個(gè)專門解決大數(shù)據(jù)問(wèn)題的Hadoop應(yīng)用。Forrester稱Pivotal Hadoop平臺(tái)的優(yōu)勢(shì)在于它整合了Pivotal、EMC、Vmware的眾多技術(shù),Pivotal的真正優(yōu)勢(shì)實(shí)際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個(gè),而且大多是中小型客戶。

Teradata

對(duì)于Teradata來(lái)說(shuō),Hadoop既是一種威脅也是一種機(jī)遇。數(shù)據(jù)管理,特別是關(guān)于SQL和關(guān)系數(shù)據(jù)庫(kù)這一領(lǐng)域是Teradata的專長(zhǎng)。所以像Hadoop這樣的NoSQL平臺(tái)崛起可能會(huì)威脅到Teradata。相反,Teradata接受了Hadoop,通過(guò)與Hortonworks合作,Teradata在Hadoop平臺(tái)集成了SQL技術(shù),這使Teradata的客戶可以在Hadoop平臺(tái)上方便地使用存儲(chǔ)在Teradata數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)。

AMPLab

通過(guò)將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔ⅲ覀儾趴梢岳斫馐澜纾@也正是AMPLab所做的。AMPLab致力于機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘、數(shù)據(jù)庫(kù)、信息檢索、自然語(yǔ)言處理和語(yǔ)音識(shí)別等多個(gè)領(lǐng)域,努力改進(jìn)對(duì)信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術(shù)。除了Spark,開源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴(kuò)展性。近幾年的發(fā)展使計(jì)算機(jī)科學(xué)進(jìn)入到全新的時(shí)代,而AMPLab為我們?cè)O(shè)想一個(gè)運(yùn)用大數(shù)據(jù)、云計(jì)算、通信等各種資源和技術(shù)靈活解決難題的方案,以應(yīng)對(duì)越來(lái)越復(fù)雜的各種難題。

NoSQL非關(guān)系數(shù)據(jù)庫(kù)和關(guān)系型數(shù)據(jù)庫(kù)的區(qū)別是什么

非關(guān)系型數(shù)據(jù)庫(kù):非關(guān)系型數(shù)據(jù)庫(kù)產(chǎn)品是傳統(tǒng)關(guān)系型數(shù)據(jù)庫(kù)的功能閹割版本,通過(guò)減少用不到或很少用的功能,來(lái)大幅度提高產(chǎn)品性能。

非關(guān)系型數(shù)據(jù)庫(kù)嚴(yán)格上不是一種數(shù)據(jù)庫(kù),應(yīng)該是一種數(shù)據(jù)結(jié)構(gòu)化存儲(chǔ)方法的集合。

關(guān)系型數(shù)據(jù)庫(kù):是指采用了關(guān)系模型來(lái)組織數(shù)據(jù)的數(shù)據(jù)庫(kù)。

關(guān)系模型指的就是二維表格模型,而一個(gè)關(guān)系型數(shù)據(jù)庫(kù)就是由二維表及其之間的聯(lián)系所組成的一個(gè)數(shù)據(jù)組織。

可以用SQL語(yǔ)句方便的在一個(gè)表以及多個(gè)表之間做非常復(fù)雜的數(shù)據(jù)查詢。

對(duì)于安全性能很高的數(shù)據(jù)訪問(wèn)要求可以實(shí)現(xiàn)。

價(jià)格

目前基本上大部分主流的非關(guān)系型數(shù)據(jù)庫(kù)都是免費(fèi)的。而比較有名氣的關(guān)系型數(shù)據(jù)庫(kù),比如Oracle、DB2、MSSQL是收費(fèi)的。雖然Mysql免費(fèi),但它需要做很多工作才能正式用于生產(chǎn)。

功能

實(shí)際開發(fā)中,有很多業(yè)務(wù)需求,其實(shí)并不需要完整的關(guān)系型數(shù)據(jù)庫(kù)功能,非關(guān)系型數(shù)據(jù)庫(kù)的功能就足夠使用了。這種情況下,使用性能更高、成本更低的非關(guān)系型數(shù)據(jù)庫(kù)當(dāng)然是更明智的選擇。

對(duì)于這兩類數(shù)據(jù)庫(kù),對(duì)方的優(yōu)勢(shì)就是自己的弱勢(shì),反之亦然。

名稱欄目:nosql數(shù)據(jù)安全性,nosql的數(shù)據(jù)安全性很強(qiáng)
URL分享:http://chinadenli.net/article30/dsiisso.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供自適應(yīng)網(wǎng)站企業(yè)網(wǎng)站制作網(wǎng)站營(yíng)銷網(wǎng)站策劃用戶體驗(yàn)虛擬主機(jī)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)

成都網(wǎng)站建設(shè)