Web1.0的時(shí)代,數(shù)據(jù)訪問量很有限,用一夫當(dāng)關(guān)的高性能的單點(diǎn)服務(wù)器可以解決大部分問題。

成都創(chuàng)新互聯(lián)公司"三網(wǎng)合一"的企業(yè)建站思路。企業(yè)可建設(shè)擁有電腦版、微信版、手機(jī)版的企業(yè)網(wǎng)站。實(shí)現(xiàn)跨屏營銷,產(chǎn)品發(fā)布一步更新,電腦網(wǎng)絡(luò)+移動(dòng)網(wǎng)絡(luò)一網(wǎng)打盡,滿足企業(yè)的營銷需求!成都創(chuàng)新互聯(lián)公司具備承接各種類型的網(wǎng)站制作、成都做網(wǎng)站項(xiàng)目的能力。經(jīng)過十載的努力的開拓,為不同行業(yè)的企事業(yè)單位提供了優(yōu)質(zhì)的服務(wù),并獲得了客戶的一致好評(píng)。
隨著Web2.0的時(shí)代的到來,用戶訪問量大幅度提升,同時(shí)產(chǎn)生了大量的用戶數(shù)據(jù)。加上后來的智能移動(dòng)設(shè)備的普及,所有的互聯(lián)網(wǎng)平臺(tái)都面臨了巨大的性能挑戰(zhàn)。
NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,泛指非關(guān)系型的數(shù)據(jù)庫。
NoSQL 不依賴業(yè)務(wù)邏輯方式存儲(chǔ),而以簡(jiǎn)單的key-value模式存儲(chǔ)。因此大大的增加了數(shù)據(jù)庫的擴(kuò)展能力。
Memcache Memcache Redis Redis MongoDB MongoDB 列式數(shù)據(jù)庫 列式數(shù)據(jù)庫 Hbase Hbase
HBase是Hadoop項(xiàng)目中的數(shù)據(jù)庫。它用于需要對(duì)大量的數(shù)據(jù)進(jìn)行隨機(jī)、實(shí)時(shí)的讀寫操作的場(chǎng)景中。
HBase的目標(biāo)就是處理數(shù)據(jù)量非常龐大的表,可以用普通的計(jì)算機(jī)處理超過10億行數(shù)據(jù),還可處理有數(shù)百萬列元素的數(shù)據(jù)表。
Cassandra Cassandra
Apache Cassandra是一款免費(fèi)的開源NoSQL數(shù)據(jù)庫,其設(shè)計(jì)目的在于管理由大量商用服務(wù)器構(gòu)建起來的龐大集群上的海量數(shù)據(jù)集(數(shù)據(jù)量通常達(dá)到PB級(jí)別)。在眾多顯著特性當(dāng)中,Cassandra最為卓越的長(zhǎng)處是對(duì)寫入及讀取操作進(jìn)行規(guī)模調(diào)整,而且其不強(qiáng)調(diào)主集群的設(shè)計(jì)思路能夠以相對(duì)直觀的方式簡(jiǎn)化各集群的創(chuàng)建與擴(kuò)展流程。
主要應(yīng)用:社會(huì)關(guān)系,公共交通網(wǎng)絡(luò),地圖及網(wǎng)絡(luò)拓譜(n*(n-1)/2)
而傳統(tǒng)的關(guān)系數(shù)據(jù)庫在應(yīng)付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動(dòng)態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,例如:
1、High performance - 對(duì)數(shù)據(jù)庫高并發(fā)讀寫的需求
web2.0網(wǎng)站要根據(jù)用戶個(gè)性化信息來實(shí)時(shí)生成動(dòng)態(tài)頁面和提供動(dòng)態(tài)信息,所以基本上無法使用動(dòng)態(tài)頁面靜態(tài)化技術(shù),因此數(shù)據(jù)庫并發(fā)負(fù)載非常高,往往要達(dá)到每秒上萬次讀寫請(qǐng)求。關(guān)系數(shù)據(jù)庫應(yīng)付上萬次SQL查詢還勉強(qiáng)頂?shù)米。菓?yīng)付上萬次SQL寫數(shù)據(jù)請(qǐng)求,硬盤IO就已經(jīng)無法承受了。其實(shí)對(duì)于普通的BBS網(wǎng)站,往往也存在對(duì)高并發(fā)寫請(qǐng)求的需求。
2、Huge Storage - 對(duì)海量數(shù)據(jù)的高效率存儲(chǔ)和訪問的需求
對(duì)于大型的SNS網(wǎng)站,每天用戶產(chǎn)生海量的用戶動(dòng)態(tài),以國外的Friendfeed為例,一個(gè)月就達(dá)到了2.5億條用戶動(dòng)態(tài),對(duì)于關(guān)系數(shù)據(jù)庫來說,在一張2.5億條記錄的表里面進(jìn)行SQL查詢,效率是極其低下乃至不可忍受的。再例如大型web網(wǎng)站的用戶登錄系統(tǒng),例如騰訊,盛大,動(dòng)輒數(shù)以億計(jì)的帳號(hào),關(guān)系數(shù)據(jù)庫也很難應(yīng)付。
3、High Scalability High Availability- 對(duì)數(shù)據(jù)庫的高可擴(kuò)展性和高可用性的需求
在基于web的架構(gòu)當(dāng)中,數(shù)據(jù)庫是最難進(jìn)行橫向擴(kuò)展的,當(dāng)一個(gè)應(yīng)用系統(tǒng)的用戶量和訪問量與日俱增的時(shí)候,你的數(shù)據(jù)庫卻沒有辦法像web server和app server那樣簡(jiǎn)單的通過添加更多的硬件和服務(wù)節(jié)點(diǎn)來擴(kuò)展性能和負(fù)載能力。對(duì)于很多需要提供24小時(shí)不間斷服務(wù)的網(wǎng)站來說,對(duì)數(shù)據(jù)庫系統(tǒng)進(jìn)行升級(jí)和擴(kuò)展是非常痛苦的事情,往往需要停機(jī)維護(hù)和數(shù)據(jù)遷移,為什么數(shù)據(jù)庫不能通過不斷的添加服務(wù)器節(jié)點(diǎn)來實(shí)現(xiàn)擴(kuò)展呢?
在上面提到的“三高”需求面前,關(guān)系數(shù)據(jù)庫遇到了難以克服的障礙,而對(duì)于web2.0網(wǎng)站來說,關(guān)系數(shù)據(jù)庫的很多主要特性卻往往無用武之地,例如:
1、數(shù)據(jù)庫事務(wù)一致性需求
很多web實(shí)時(shí)系統(tǒng)并不要求嚴(yán)格的數(shù)據(jù)庫事務(wù),對(duì)讀一致性的要求很低,有些場(chǎng)合對(duì)寫一致性要求也不高。因此數(shù)據(jù)庫事務(wù)管理成了數(shù)據(jù)庫高負(fù)載下一個(gè)沉重的負(fù)擔(dān)。
2、數(shù)據(jù)庫的寫實(shí)時(shí)性和讀實(shí)時(shí)性需求
對(duì)關(guān)系數(shù)據(jù)庫來說,插入一條數(shù)據(jù)之后立刻查詢,是肯定可以讀出來這條數(shù)據(jù)的,但是對(duì)于很多web應(yīng)用來說,并不要求這么高的實(shí)時(shí)性。
3、對(duì)復(fù)雜的SQL查詢,特別是多表關(guān)聯(lián)查詢的需求
任何大數(shù)據(jù)量的web系統(tǒng),都非常忌諱多個(gè)大表的關(guān)聯(lián)查詢,以及復(fù)雜的數(shù)據(jù)分析類型的復(fù)雜SQL報(bào)表查詢,特別是SNS類型的網(wǎng)站,從需求以及產(chǎn)品設(shè)計(jì)角度,就避免了這種情況的產(chǎn)生。往往更多的只是單表的主鍵查詢,以及單表的簡(jiǎn)單條件分頁查詢,SQL的功能被極大的弱化了。
因此,關(guān)系數(shù)據(jù)庫在這些越來越多的應(yīng)用場(chǎng)景下顯得不那么合適了,為了解決這類問題的非關(guān)系數(shù)據(jù)庫應(yīng)運(yùn)而生。
NoSQL 是非關(guān)系型數(shù)據(jù)存儲(chǔ)的廣義定義。它打破了長(zhǎng)久以來關(guān)系型數(shù)據(jù)庫與ACID理論大一統(tǒng)的局面。NoSQL 數(shù)據(jù)存儲(chǔ)不需要固定的表結(jié)構(gòu),通常也不存在連接操作。在大數(shù)據(jù)存取上具備關(guān)系型數(shù)據(jù)庫無法比擬的性能優(yōu)勢(shì)。該術(shù)語在 2009 年初得到了廣泛認(rèn)同。
當(dāng)今的應(yīng)用體系結(jié)構(gòu)需要數(shù)據(jù)存儲(chǔ)在橫向伸縮性上能夠滿足需求。而 NoSQL 存儲(chǔ)就是為了實(shí)現(xiàn)這個(gè)需求。Google 的BigTable與Amazon的Dynamo是非常成功的商業(yè) NoSQL 實(shí)現(xiàn)。一些開源的 NoSQL 體系,如Facebook 的Cassandra, Apache 的HBase,也得到了廣泛認(rèn)同。
在大數(shù)據(jù)時(shí)代,“多種架構(gòu)支持多類應(yīng)用”成為數(shù)據(jù)庫行業(yè)應(yīng)對(duì)大數(shù)據(jù)的基本思路,數(shù)據(jù)庫行業(yè)出現(xiàn)互為補(bǔ)充的三大陣營,適用于事務(wù)處理應(yīng)用的OldSQL、適用于數(shù)據(jù)分析應(yīng)用的NewSQL和適用于互聯(lián)網(wǎng)應(yīng)用的NoSQL。但在一些復(fù)雜的應(yīng)用場(chǎng)景中,單一數(shù)據(jù)庫架構(gòu)都不能完全滿足應(yīng)用場(chǎng)景對(duì)海量結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)的存儲(chǔ)管理、復(fù)雜分析、關(guān)聯(lián)查詢、實(shí)時(shí)性處理和控制建設(shè)成本等多方面的需要,因此不同架構(gòu)數(shù)據(jù)庫混合部署應(yīng)用成為滿足復(fù)雜應(yīng)用的必然選擇。不同架構(gòu)數(shù)據(jù)庫混合使用的模式可以概括為:OldSQL+NewSQL、OldSQL+NoSQL、NewSQL+NoSQL三種主要模式。下面通過三個(gè)案例對(duì)不同架構(gòu)數(shù)據(jù)庫的混合應(yīng)用部署進(jìn)行介紹。
OldSQL+NewSQL 在數(shù)據(jù)中心類應(yīng)用中混合部署
采用OldSQL+NewSQL模式構(gòu)建數(shù)據(jù)中心,在充分發(fā)揮OldSQL數(shù)據(jù)庫的事務(wù)處理能力的同時(shí),借助NewSQL在實(shí)時(shí)性、復(fù)雜分析、即席查詢等方面的獨(dú)特優(yōu)勢(shì),以及面對(duì)海量數(shù)據(jù)時(shí)較強(qiáng)的擴(kuò)展能力,滿足數(shù)據(jù)中心對(duì)當(dāng)前“熱”數(shù)據(jù)事務(wù)型處理和海量歷史“冷”數(shù)據(jù)分析兩方面的需求。OldSQL+NewSQL模式在數(shù)據(jù)中心類應(yīng)用中的互補(bǔ)作用體現(xiàn)在,OldSQL彌補(bǔ)了NewSQL不適合事務(wù)處理的不足,NewSQL彌補(bǔ)了OldSQL在海量數(shù)據(jù)存儲(chǔ)能力和處理性能方面的缺陷。
商業(yè)銀行數(shù)據(jù)中心采用OldSQL+NewSQL混合部署方式搭建,OldSQL數(shù)據(jù)庫滿足各業(yè)務(wù)系統(tǒng)數(shù)據(jù)的歸檔備份和事務(wù)型應(yīng)用,NewSQL MPP數(shù)據(jù)庫集群對(duì)即席查詢、多維分析等應(yīng)用提供高性能支持,并且通過MPP集群架構(gòu)實(shí)現(xiàn)應(yīng)對(duì)海量數(shù)據(jù)存儲(chǔ)的擴(kuò)展能力。
商業(yè)銀行數(shù)據(jù)中心存儲(chǔ)架構(gòu)
與傳統(tǒng)的OldSQL模式相比,商業(yè)銀行數(shù)據(jù)中心采用OldSQL+NewSQL混合搭建模式,數(shù)據(jù)加載性能提升3倍以上,即席查詢和統(tǒng)計(jì)分析性能提升6倍以上。NewSQL MPP的高可擴(kuò)展性能夠應(yīng)對(duì)新的業(yè)務(wù)需求,可隨著數(shù)據(jù)量的增長(zhǎng)采用集群方式構(gòu)建存儲(chǔ)容量更大的數(shù)據(jù)中心。
OldSQL+NoSQL 在互聯(lián)網(wǎng)大數(shù)據(jù)應(yīng)用中混合部署
在互聯(lián)網(wǎng)大數(shù)據(jù)應(yīng)用中采用OldSQL+NoSQL混合模式,能夠很好的解決互聯(lián)網(wǎng)大數(shù)據(jù)應(yīng)用對(duì)海量結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)進(jìn)行存儲(chǔ)和快速處理的需求。在諸如大型電子商務(wù)平臺(tái)、大型SNS平臺(tái)等互聯(lián)網(wǎng)大數(shù)據(jù)應(yīng)用場(chǎng)景中,OldSQL在應(yīng)用中負(fù)責(zé)高價(jià)值密度結(jié)構(gòu)化數(shù)據(jù)的存儲(chǔ)和事務(wù)型處理,NoSQL在應(yīng)用中負(fù)責(zé)存儲(chǔ)和處理海量非結(jié)構(gòu)化的數(shù)據(jù)和低價(jià)值密度結(jié)構(gòu)化數(shù)據(jù)。OldSQL+NoSQL模式在互聯(lián)網(wǎng)大數(shù)據(jù)應(yīng)用中的互補(bǔ)作用體現(xiàn)在,OldSQL彌補(bǔ)了NoSQL在ACID特性和復(fù)雜關(guān)聯(lián)運(yùn)算方面的不足,NoSQL彌補(bǔ)了OldSQL在海量數(shù)據(jù)存儲(chǔ)和非結(jié)構(gòu)化數(shù)據(jù)處理方面的缺陷。
數(shù)據(jù)魔方是淘寶網(wǎng)的一款數(shù)據(jù)產(chǎn)品,主要提供行業(yè)數(shù)據(jù)分析、店鋪數(shù)據(jù)分析。淘寶數(shù)據(jù)產(chǎn)品在存儲(chǔ)層采用OldSQL+NoSQL混合模式,由基于MySQL的分布式關(guān)系型數(shù)據(jù)庫集群MyFOX和基于HBase的NoSQL存儲(chǔ)集群Prom組成。由于OldSQL強(qiáng)大的語義和關(guān)系表達(dá)能力,在應(yīng)用中仍然占據(jù)著重要地位,目前存儲(chǔ)在MyFOX中的統(tǒng)計(jì)結(jié)果數(shù)據(jù)已經(jīng)達(dá)到10TB,占據(jù)著數(shù)據(jù)魔方總數(shù)據(jù)量的95%以上。另一方面,NoSQL作為SQL的有益補(bǔ)充,解決了OldSQL數(shù)據(jù)庫無法解決的全屬性選擇器等問題。
淘寶海量數(shù)據(jù)產(chǎn)品技術(shù)架構(gòu)
基于OldSQL+NoSQL混合架構(gòu)的特點(diǎn),數(shù)據(jù)魔方目前已經(jīng)能夠提供壓縮前80TB的數(shù)據(jù)存儲(chǔ)空間,支持每天4000萬的查詢請(qǐng)求,平均響應(yīng)時(shí)間在28毫秒,足以滿足未來一段時(shí)間內(nèi)的業(yè)務(wù)增長(zhǎng)需求。
NewSQL+NoSQL 在行業(yè)大數(shù)據(jù)應(yīng)用中混合部署
行業(yè)大數(shù)據(jù)與互聯(lián)網(wǎng)大數(shù)據(jù)的區(qū)別在于行業(yè)大數(shù)據(jù)的價(jià)值密度更高,并且對(duì)結(jié)構(gòu)化數(shù)據(jù)的實(shí)時(shí)處理、復(fù)雜的多表關(guān)聯(lián)分析、即席查詢、數(shù)據(jù)強(qiáng)一致性等都比互聯(lián)網(wǎng)大數(shù)據(jù)有更高的要求。行業(yè)大數(shù)據(jù)應(yīng)用場(chǎng)景主要是分析類應(yīng)用,如:電信、金融、政務(wù)、能源等行業(yè)的決策輔助、預(yù)測(cè)預(yù)警、統(tǒng)計(jì)分析、經(jīng)營分析等。
在行業(yè)大數(shù)據(jù)應(yīng)用中采用NewSQL+NoSQL混合模式,充分利用NewSQL在結(jié)構(gòu)化數(shù)據(jù)分析處理方面的優(yōu)勢(shì),以及NoSQL在非結(jié)構(gòu)數(shù)據(jù)處理方面的優(yōu)勢(shì),實(shí)現(xiàn)NewSQL與NoSQL的功能互補(bǔ),解決行業(yè)大數(shù)據(jù)應(yīng)用對(duì)高價(jià)值結(jié)構(gòu)化數(shù)據(jù)的實(shí)時(shí)處理、復(fù)雜的多表關(guān)聯(lián)分析、即席查詢、數(shù)據(jù)強(qiáng)一致性等要求,以及對(duì)海量非結(jié)構(gòu)化數(shù)據(jù)存儲(chǔ)和精確查詢的要求。在應(yīng)用中,NewSQL承擔(dān)高價(jià)值密度結(jié)構(gòu)化數(shù)據(jù)的存儲(chǔ)和分析處理工作,NoSQL承擔(dān)存儲(chǔ)和處理海量非結(jié)構(gòu)化數(shù)據(jù)和不需要關(guān)聯(lián)分析、Ad-hoc查詢較少的低價(jià)值密度結(jié)構(gòu)化數(shù)據(jù)的工作。
當(dāng)前電信運(yùn)營商在集中化BI系統(tǒng)建設(shè)過程中面臨著數(shù)據(jù)規(guī)模大、數(shù)據(jù)處理類型多等問題,并且需要應(yīng)對(duì)大量的固定應(yīng)用,以及占統(tǒng)計(jì)總數(shù)80%以上的突發(fā)性臨時(shí)統(tǒng)計(jì)(ad-hoc)需求。在集中化BI系統(tǒng)的建設(shè)中采用NewSQL+NoSQL混搭的模式,充分利用NewSQL在復(fù)雜分析、即席查詢等方面處理性能的優(yōu)勢(shì),及NoSQL在非結(jié)構(gòu)化數(shù)據(jù)處理和海量數(shù)據(jù)存儲(chǔ)方面的優(yōu)勢(shì),實(shí)現(xiàn)高效低成本。
集中化BI系統(tǒng)數(shù)據(jù)存儲(chǔ)架構(gòu)
集中化BI系統(tǒng)按照數(shù)據(jù)類型和處理方式的不同,將結(jié)構(gòu)化數(shù)據(jù)和非結(jié)構(gòu)化數(shù)據(jù)分別存儲(chǔ)在不同的系統(tǒng)中:非結(jié)構(gòu)化數(shù)據(jù)在Hadoop平臺(tái)上存儲(chǔ)與處理;結(jié)構(gòu)化、不需要關(guān)聯(lián)分析、Ad-hoc查詢較少的數(shù)據(jù)保存在NoSQL數(shù)據(jù)庫或Hadoop平臺(tái);結(jié)構(gòu)化、需要關(guān)聯(lián)分析或經(jīng)常ad-hoc查詢的數(shù)據(jù),保存在NewSQL MPP數(shù)據(jù)庫中,短期高價(jià)值數(shù)據(jù)放在高性能平臺(tái),中長(zhǎng)期放在低成本產(chǎn)品中。
結(jié)語
當(dāng)前信息化應(yīng)用的多樣性、復(fù)雜性,以及三種數(shù)據(jù)庫架構(gòu)各自所具有的優(yōu)勢(shì)和局限性,造成任何一種架構(gòu)的數(shù)據(jù)庫都不能完全滿足應(yīng)用需求,因此不同架構(gòu)數(shù)據(jù)庫混合使用,從而彌補(bǔ)其他架構(gòu)的不足成為必然選擇。根據(jù)應(yīng)用場(chǎng)景采用不同架構(gòu)數(shù)據(jù)庫進(jìn)行組合搭配,充分發(fā)揮每種架構(gòu)數(shù)據(jù)庫的特點(diǎn)和優(yōu)勢(shì),并且與其他架構(gòu)數(shù)據(jù)庫形成互補(bǔ),完全涵蓋應(yīng)用需求,保證數(shù)據(jù)資源的最優(yōu)化利用,將成為未來一段時(shí)期內(nèi)信息化應(yīng)用主要采用的解決方式。
目前在國內(nèi)市場(chǎng)上,OldSQL主要為Oracle、IBM等國外數(shù)據(jù)庫廠商所壟斷,達(dá)夢(mèng)、金倉等國產(chǎn)廠商仍處于追趕狀態(tài);南大通用憑借國產(chǎn)新型數(shù)據(jù)庫GBase 8a異軍突起,與EMC的Greenplum和HP的Vertica躋身NewSQL市場(chǎng)三強(qiáng);NoSQL方面用戶則大多采用Hadoop開源方案。
本質(zhì)是因?yàn)椋弘S著互聯(lián)網(wǎng)的進(jìn)一步發(fā)展與各行業(yè)信息化建設(shè)進(jìn)程加快、參與者的增多,人們對(duì)軟件有了更多更新的要求,需要軟件不僅能實(shí)現(xiàn)功能,而且要求保證許多人可以共同參與使用,因而軟件所需承載的數(shù)據(jù)量和吞吐量必須達(dá)到相應(yīng)的需求。而目前的關(guān)系型數(shù)據(jù)庫在某些方面有一些缺點(diǎn),導(dǎo)致不能滿足需要。
具體則需要對(duì)比關(guān)系型數(shù)據(jù)庫與Nosql之間的區(qū)別可以得出
關(guān)系型數(shù)據(jù)庫
關(guān)系型數(shù)據(jù)庫把所有的數(shù)據(jù)都通過行和列的二元表現(xiàn)形式表示出來。
關(guān)系型數(shù)據(jù)庫的優(yōu)勢(shì):
1.?保持?jǐn)?shù)據(jù)的一致性(事務(wù)處理)
2.由于以標(biāo)準(zhǔn)化為前提,數(shù)據(jù)更新的開銷很小(相同的字段基本上都只有一處)
3.?可以進(jìn)行Join等復(fù)雜查詢
其中能夠保持?jǐn)?shù)據(jù)的一致性是關(guān)系型數(shù)據(jù)庫的最大優(yōu)勢(shì)。
關(guān)系型數(shù)據(jù)庫的不足:
不擅長(zhǎng)的處理
1.?大量數(shù)據(jù)的寫入處理(這點(diǎn)尤為重要)
2.?為有數(shù)據(jù)更新的表做索引或表結(jié)構(gòu)(schema)變更
3.?字段不固定時(shí)應(yīng)用
4.?對(duì)簡(jiǎn)單查詢需要快速返回結(jié)果的處理
--大量數(shù)據(jù)的寫入處理
讀寫集中在一個(gè)數(shù)據(jù)庫上讓數(shù)據(jù)庫不堪重負(fù),大部分網(wǎng)站已使用主從復(fù)制技術(shù)實(shí)現(xiàn)讀寫分離,以提高讀寫性能和讀庫的可擴(kuò)展性。
所以在進(jìn)行大量數(shù)據(jù)操作時(shí),會(huì)使用數(shù)據(jù)庫主從模式。數(shù)據(jù)的寫入由主數(shù)據(jù)庫負(fù)責(zé),數(shù)據(jù)的讀入由從數(shù)據(jù)庫負(fù)責(zé),可以比較簡(jiǎn)單地通過增加從數(shù)據(jù)庫來實(shí)現(xiàn)規(guī)模化,但是數(shù)據(jù)的寫入?yún)s完全沒有簡(jiǎn)單的方法來解決規(guī)模化問題。
第一,要想將數(shù)據(jù)的寫入規(guī)模化,可以考慮把主數(shù)據(jù)庫從一臺(tái)增加到兩臺(tái),作為互相關(guān)聯(lián)復(fù)制的二元主數(shù)據(jù)庫使用,確實(shí)這樣可以把每臺(tái)主數(shù)據(jù)庫的負(fù)荷減少一半,但是更新處理會(huì)發(fā)生沖突,可能會(huì)造成數(shù)據(jù)的不一致,為了避免這樣的問題,需要把對(duì)每個(gè)表的請(qǐng)求分別分配給合適的主數(shù)據(jù)庫來處理。
第二,可以考慮把數(shù)據(jù)庫分割開來,分別放在不同的數(shù)據(jù)庫服務(wù)器上,比如將不同的表放在不同的數(shù)據(jù)庫服務(wù)器上,數(shù)據(jù)庫分割可以減少每臺(tái)數(shù)據(jù)庫服務(wù)器上的數(shù)據(jù)量,以便減少硬盤IO的輸入、輸出處理,實(shí)現(xiàn)內(nèi)存上的高速處理。但是由于分別存儲(chǔ)字不同服務(wù)器上的表之間無法進(jìn)行Join處理,數(shù)據(jù)庫分割的時(shí)候就需要預(yù)先考慮這些問題,數(shù)據(jù)庫分割之后,如果一定要進(jìn)行Join處理,就必須要在程序中進(jìn)行關(guān)聯(lián),這是非常困難的。
--為有數(shù)據(jù)更新的表做索引或表結(jié)構(gòu)變更
在使用關(guān)系型數(shù)據(jù)庫時(shí),為了加快查詢速度需要?jiǎng)?chuàng)建索引,為了增加必要的字段就一定要改變表結(jié)構(gòu),為了進(jìn)行這些處理,需要對(duì)表進(jìn)行共享鎖定,這期間數(shù)據(jù)變更、更新、插入、刪除等都是無法進(jìn)行的。如果需要進(jìn)行一些耗時(shí)操作,例如為數(shù)據(jù)量比較大的表創(chuàng)建索引或是變更其表結(jié)構(gòu),就需要特別注意,長(zhǎng)時(shí)間內(nèi)數(shù)據(jù)可能無法進(jìn)行更新。
--字段不固定時(shí)的應(yīng)用
如果字段不固定,利用關(guān)系型數(shù)據(jù)庫也是比較困難的,有人會(huì)說,需要的時(shí)候加個(gè)字段就可以了,這樣的方法也不是不可以,但在實(shí)際運(yùn)用中每次都進(jìn)行反復(fù)的表結(jié)構(gòu)變更是非常痛苦的。你也可以預(yù)先設(shè)定大量的預(yù)備字段,但這樣的話,時(shí)間一長(zhǎng)很容易弄不清除字段和數(shù)據(jù)的對(duì)應(yīng)狀態(tài),即哪個(gè)字段保存有哪些數(shù)據(jù)。
--對(duì)簡(jiǎn)單查詢需要快速返回結(jié)果的處理? (這里的“簡(jiǎn)單”指的是沒有復(fù)雜的查詢條件)
這一點(diǎn)稱不上是缺點(diǎn),但不管怎樣,關(guān)系型數(shù)據(jù)庫并不擅長(zhǎng)對(duì)簡(jiǎn)單的查詢快速返回結(jié)果,因?yàn)殛P(guān)系型數(shù)據(jù)庫是使用專門的sql語言進(jìn)行數(shù)據(jù)讀取的,它需要對(duì)sql與越南進(jìn)行解析,同時(shí)還有對(duì)表的鎖定和解鎖等這樣的額外開銷,這里并不是說關(guān)系型數(shù)據(jù)庫的速度太慢,而只是想告訴大家若希望對(duì)簡(jiǎn)單查詢進(jìn)行高速處理,則沒有必要非使用關(guān)系型數(shù)據(jù)庫不可。
NoSQL數(shù)據(jù)庫
關(guān)系型數(shù)據(jù)庫應(yīng)用廣泛,能進(jìn)行事務(wù)處理和表連接等復(fù)雜查詢。相對(duì)地,NoSQL數(shù)據(jù)庫只應(yīng)用在特定領(lǐng)域,基本上不進(jìn)行復(fù)雜的處理,但它恰恰彌補(bǔ)了之前所列舉的關(guān)系型數(shù)據(jù)庫的不足之處。
優(yōu)點(diǎn):
易于數(shù)據(jù)的分散
各個(gè)數(shù)據(jù)之間存在關(guān)聯(lián)是關(guān)系型數(shù)據(jù)庫得名的主要原因,為了進(jìn)行join處理,關(guān)系型數(shù)據(jù)庫不得不把數(shù)據(jù)存儲(chǔ)在同一個(gè)服務(wù)器內(nèi),這不利于數(shù)據(jù)的分散,這也是關(guān)系型數(shù)據(jù)庫并不擅長(zhǎng)大數(shù)據(jù)量的寫入處理的原因。相反NoSQL數(shù)據(jù)庫原本就不支持Join處理,各個(gè)數(shù)據(jù)都是獨(dú)立設(shè)計(jì)的,很容易把數(shù)據(jù)分散在多個(gè)服務(wù)器上,故減少了每個(gè)服務(wù)器上的數(shù)據(jù)量,即使要處理大量數(shù)據(jù)的寫入,也變得更加容易,數(shù)據(jù)的讀入操作當(dāng)然也同樣容易。
典型的NoSQL數(shù)據(jù)庫
臨時(shí)性鍵值存儲(chǔ)(memcached、Redis)、永久性鍵值存儲(chǔ)(ROMA、Redis)、面向文檔的數(shù)據(jù)庫(MongoDB、CouchDB)、面向列的數(shù)據(jù)庫(Cassandra、HBase)
一、 鍵值存儲(chǔ)
它的數(shù)據(jù)是以鍵值的形式存儲(chǔ)的,雖然它的速度非常快,但基本上只能通過鍵的完全一致查詢獲取數(shù)據(jù),根據(jù)數(shù)據(jù)的保存方式可以分為臨時(shí)性、永久性和兩者兼具 三種。
(1)臨時(shí)性
所謂臨時(shí)性就是數(shù)據(jù)有可能丟失,memcached把所有數(shù)據(jù)都保存在內(nèi)存中,這樣保存和讀取的速度非常快,但是當(dāng)memcached停止時(shí),數(shù)據(jù)就不存在了。由于數(shù)據(jù)保存在內(nèi)存中,所以無法操作超出內(nèi)存容量的數(shù)據(jù),舊數(shù)據(jù)會(huì)丟失。總結(jié)來說:
。在內(nèi)存中保存數(shù)據(jù)
。可以進(jìn)行非常快速的保存和讀取處理
。數(shù)據(jù)有可能丟失
(2)永久性
所謂永久性就是數(shù)據(jù)不會(huì)丟失,這里的鍵值存儲(chǔ)是把數(shù)據(jù)保存在硬盤上,與臨時(shí)性比起來,由于必然要發(fā)生對(duì)硬盤的IO操作,所以性能上還是有差距的,但數(shù)據(jù)不會(huì)丟失是它最大的優(yōu)勢(shì)。總結(jié)來說:
。在硬盤上保存數(shù)據(jù)
。可以進(jìn)行非常快速的保存和讀取處理(但無法與memcached相比)
。數(shù)據(jù)不會(huì)丟失
(3) 兩者兼?zhèn)?/p>
Redis屬于這種類型。Redis有些特殊,臨時(shí)性和永久性兼具。Redis首先把數(shù)據(jù)保存在內(nèi)存中,在滿足特定條件(默認(rèn)是?15分鐘一次以上,5分鐘內(nèi)10個(gè)以上,1分鐘內(nèi)10000個(gè)以上的鍵發(fā)生變更)的時(shí)候?qū)?shù)據(jù)寫入到硬盤中,這樣既確保了內(nèi)存中數(shù)據(jù)的處理速度,又可以通過寫入硬盤來保證數(shù)據(jù)的永久性,這種類型的數(shù)據(jù)庫特別適合處理數(shù)組類型的數(shù)據(jù)。總結(jié)來說:
。同時(shí)在內(nèi)存和硬盤上保存數(shù)據(jù)
。可以進(jìn)行非常快速的保存和讀取處理
。保存在硬盤上的數(shù)據(jù)不會(huì)消失(可以恢復(fù))
。適合于處理數(shù)組類型的數(shù)據(jù)
二、面向文檔的數(shù)據(jù)庫
MongoDB、CouchDB屬于這種類型,它們屬于NoSQL數(shù)據(jù)庫,但與鍵值存儲(chǔ)相異。
(1)不定義表結(jié)構(gòu)
即使不定義表結(jié)構(gòu),也可以像定義了表結(jié)構(gòu)一樣使用,還省去了變更表結(jié)構(gòu)的麻煩。
(2)可以使用復(fù)雜的查詢條件
跟鍵值存儲(chǔ)不同的是,面向文檔的數(shù)據(jù)庫可以通過復(fù)雜的查詢條件來獲取數(shù)據(jù),雖然不具備事務(wù)處理和Join這些關(guān)系型數(shù)據(jù)庫所具有的處理能力,但初次以外的其他處理基本上都能實(shí)現(xiàn)。
三、?面向列的數(shù)據(jù)庫
Cassandra、HBae、HyperTable屬于這種類型,由于近年來數(shù)據(jù)量出現(xiàn)爆發(fā)性增長(zhǎng),這種類型的NoSQL數(shù)據(jù)庫尤其引入注目。
普通的關(guān)系型數(shù)據(jù)庫都是以行為單位來存儲(chǔ)數(shù)據(jù)的,擅長(zhǎng)以行為單位的讀入處理,比如特定條件數(shù)據(jù)的獲取。因此,關(guān)系型數(shù)據(jù)庫也被成為面向行的數(shù)據(jù)庫。相反,面向列的數(shù)據(jù)庫是以列為單位來存儲(chǔ)數(shù)據(jù)的,擅長(zhǎng)以列為單位讀入數(shù)據(jù)。
面向列的數(shù)據(jù)庫具有搞擴(kuò)展性,即使數(shù)據(jù)增加也不會(huì)降低相應(yīng)的處理速度(特別是寫入速度),所以它主要應(yīng)用于需要處理大量數(shù)據(jù)的情況。另外,把它作為批處理程序的存儲(chǔ)器來對(duì)大量數(shù)據(jù)進(jìn)行更新也是非常有用的。但由于面向列的數(shù)據(jù)庫跟現(xiàn)行數(shù)據(jù)庫存儲(chǔ)的思維方式有很大不同,故應(yīng)用起來十分困難。
總結(jié):關(guān)系型數(shù)據(jù)庫與NoSQL數(shù)據(jù)庫并非對(duì)立而是互補(bǔ)的關(guān)系,即通常情況下使用關(guān)系型數(shù)據(jù)庫,在適合使用NoSQL的時(shí)候使用NoSQL數(shù)據(jù)庫,讓NoSQL數(shù)據(jù)庫對(duì)關(guān)系型數(shù)據(jù)庫的不足進(jìn)行彌補(bǔ)。
新聞名稱:NoSQL不適合哪些場(chǎng)景,NoSQL的應(yīng)用場(chǎng)景
URL分享:http://chinadenli.net/article22/dsidhcc.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供定制網(wǎng)站、建站公司、品牌網(wǎng)站建設(shè)、商城網(wǎng)站、企業(yè)網(wǎng)站制作、自適應(yīng)網(wǎng)站
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)