欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

為什么Spark在數(shù)據(jù)科學界這么紅?

2021-02-08    分類: 網(wǎng)站建設

為什么 Spark 在數(shù)據(jù)科學界這么紅?

今天是2019年,要是有誰說有十年大數(shù)據(jù)工作經(jīng)驗,我是不信的。因為 Spark 正式應用才多少年?看過下面文章的你,應該就知道了,2012 年移交 Apache Spark, 就算他是 Spark 的 Committer, 滿打滿算才 7 年。

如果是 2006 年 Hadoop 一代長老呢,那肯定有 10 年大數(shù)據(jù)經(jīng)驗了,但依然只能說是半吊子的大數(shù)據(jù)工程師,因為真正有實時大數(shù)據(jù)平臺的年代,要從 2012 年 Apache Spark 正式推出算起。

Spark 是 Apache 的頂級項目,一舉一動都在整個社區(qū)的矚目之下。凡是由 Apache 推動的項目,自然大概率是比較成功的?;叵?Google 當年沒將 Big Table, Map Reduce, GFS 及時的推廣到 Apache 落地,反而被后來者 Hadoop 奪得了頭魁,甚為惋惜。想知道Google 錯過這段好時機,可以看我的這篇文章《繼螞蟻金服OceanBase之后,騰訊也祭出了大殺技》

最初時,Spark 孵化于加利福尼亞大學(University of California) 伯克利分校(Berkeley)的大數(shù)據(jù)實驗室( AMPLab).說起這個實驗室,還有兩個巨頭產(chǎn)品, Apache Mesos 和 Alluxio. 看官可能對這兩產(chǎn)品不是很了解,沒關系,這里也不打算講,以后再細說。

2006 年, Hadoop 基于 Google 的三駕馬車,先于 GCP 而被世人所知。除了分布式存儲擴充了商業(yè)關系型數(shù)據(jù)庫的存儲容量外,Map Reduce 更是一大創(chuàng)舉,讓分布式計算取得了開創(chuàng)新的進展。但 Map Reduce 的原理注定了它的致命缺陷,中間數(shù)據(jù)集要存盤,以致于丟失了性能上的戰(zhàn)略牌。被 Spark 的內(nèi)存式彈性分布數(shù)據(jù)集(Resilient Distributed Dataset)撿了個漏。于是 Spark 于 2009 年橫空出世,彌補了 Hadoop 性能上的缺陷,由此也搶到了一塊市場。

Hadoop 本來被期望很高,直指機器學習與人工智能,科學家已經(jīng)嘗試在 Hadoop 上研發(fā)機器學習的軟件庫,但由于中間數(shù)據(jù)要存盤的這一致命缺陷,導致最終很多實時計算項目爛尾,而科學家們在另外一個項目,叫做 Mesos(分布式集群管理) 上取得長足進展,索性在 Mesos 上建立 Spark(分布式計算) 來替代 Hadoop.

由此可見,Hadoop 之所以會被 Spark 打敗,完全是市場新興的訴求(機器學習與人工智能)使然。Spark 的出生,就是為了解決機器學習的困境。

當然,說 Spark 打敗 Hadoop 有些不嚴謹,就像說 Apple 的 iOS 打敗 Google 的 Andriod 一樣,兩者是補充,滿足了不同的市場需求而已。Spark 與 Hadoop 在應用場景上,只是互相補充罷了,畢竟實現(xiàn) Spark 的硬件要求比 Hadoop 要高很多,成本也就不一樣了。這些都是廠商不會直接告訴你的。

Hadoop 先于 Spark 3 年出世,那么做為 Spark 如何快速從 Hadoop 中奪取屬于自己的市場呢?從頭建立自己的分布式管理,還是利用 Hadoop 已有市場,與 Hadoop 兼容 ,只拋出自己的分布式計算引擎呢?很顯然, 聰明人都會選后者,沒必要從頭建立一個輪子啊。所以很快的,社區(qū)對于 Spark 的接受也相當輕松。社區(qū)的推廣在很大程度上也助推了 Spark 的應用鋪貨。

Spark 流行的基礎原因說的差不多了,那再說點高級應用。軟件發(fā)生到現(xiàn)在這個時間段,真不是哪家軟件能解決某個問題而已了,而是哪家軟件能提供一整套應用鏈,就用那家。所以開放性就決定了軟件體系能走多遠。

就跟編程語言一樣的,原本的 Visual FoxPro, Visual Basic, Delphi 本是解決 MIS 系統(tǒng)的最有效編程工具,但隨著 web, mobile 應用需求的出現(xiàn),這些工具再也跟不上需求發(fā)展的步伐了,逐漸就被市場給拋棄了。

縱觀 現(xiàn)在主流的編程語言,Java, Python, 哪一個不是包羅萬象,既可以玩的了 C/S 傳統(tǒng)開發(fā),又駕馭的了 B/S 的潮流,甚至在 mobile 應用上也能對付。Spark 也一樣,除了能玩轉數(shù)據(jù) CRUD(Create, Retrieve, Update, Delete), 更能匹配當下數(shù)據(jù)科學的潮流,比如批量,實時 ETL, 比如集成各種數(shù)據(jù)分析,數(shù)據(jù)挖掘的算法,高效的去完成機器學習。

Spark 在擁抱內(nèi)存式分布計算的同時,順應時勢間接容納了 Spark Streaming, Spark Machine Learning(MLlib)Spark SQL 和 Spark GraphX, 這些組件是當下互聯(lián)網(wǎng)生態(tài)需求的大綜合,可以說整個數(shù)據(jù)應用鏈,Spark 都好的提供了解決方案,那么它不紅,都沒理由了!

當前標題:為什么Spark在數(shù)據(jù)科學界這么紅?
本文路徑:http://chinadenli.net/news/99782.html

成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站收錄、網(wǎng)站內(nèi)鏈、定制開發(fā)手機網(wǎng)站建設、網(wǎng)站導航、服務器托管

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉載內(nèi)容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯(lián)

搜索引擎優(yōu)化
欧美不卡高清一区二区三区| 欧美一区二区三区播放| 日本熟女中文字幕一区| 亚洲深夜精品福利一区| 亚洲香艳网久久五月婷婷| 性欧美唯美尤物另类视频| 台湾综合熟女一区二区| 熟女免费视频一区二区| 天堂网中文字幕在线观看| 99久久免费看国产精品| 日韩精品福利在线观看| 国产一级二级三级观看| 伊人久久青草地综合婷婷| 制服丝袜美腿美女一区二区| 国产精品欧美一区两区| 日韩精品成区中文字幕| 国产不卡最新在线视频| 人妻精品一区二区三区视频免精| 久久精品亚洲情色欧美| 肥白女人日韩中文视频 | 性欧美唯美尤物另类视频| 久久国产亚洲精品成人| 黑鬼糟蹋少妇资源在线观看| 日韩免费午夜福利视频| 欧美精品久久男人的天堂| 69老司机精品视频在线观看| 久久久精品区二区三区| 五月婷婷亚洲综合一区| 日韩精品视频免费观看| 嫩草国产福利视频一区二区| 国语久精品在视频在线观看| 日韩一级免费中文字幕视频| 91日韩欧美国产视频| 国产又大又硬又粗又湿| 好东西一起分享老鸭窝| 欧美中文日韩一区久久| 国产高清在线不卡一区| 国产又大又硬又粗又湿| 色婷婷视频免费在线观看| 午夜精品麻豆视频91| 欧美日韩久久精品一区二区|