這篇文章主要介紹了python代碼如何實(shí)現(xiàn)余弦相似性計(jì)算,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下

A:西米喜歡健身
B:超超不愛(ài)健身,喜歡打游戲
step1:分詞
A:西米/喜歡/健身
B:超超/不/喜歡/健身,喜歡/打/游戲
step2:列出兩個(gè)句子的并集
西米/喜歡/健身/超超/不/打/游戲
step3:計(jì)算詞頻向量
A:[1,1,1,0,0,0,0]
B:[0,1,1,1,1,1,1]
step4:計(jì)算余弦值
余弦值越大,證明夾角越小,兩個(gè)向量越相似。
step5:python代碼實(shí)現(xiàn)
import jieba
import jieba.analyse
def words2vec(words1=None, words2=None):
v1 = []
v2 = []
tag1 = jieba.analyse.extract_tags(words1, withWeight=True)
tag2 = jieba.analyse.extract_tags(words2, withWeight=True)
tag_dict1 = {i[0]: i[1] for i in tag1}
tag_dict2 = {i[0]: i[1] for i in tag2}
merged_tag = set(tag_dict1.keys()) | set(tag_dict2.keys())
for i in merged_tag:
if i in tag_dict1:
v1.append(tag_dict1[i])
else:
v1.append(0)
if i in tag_dict2:
v2.append(tag_dict2[i])
else:
v2.append(0)
return v1, v2
def cosine_similarity(vector1, vector2):
dot_product = 0.0
normA = 0.0
normB = 0.0
for a, b in zip(vector1, vector2):
dot_product += a * b
normA += a ** 2
normB += b ** 2
if normA == 0.0 or normB == 0.0:
return 0
else:
return round(dot_product / ((normA**0.5)*(normB**0.5)) * 100, 2)
def cosine(str1, str2):
vec1, vec2 = words2vec(str1, str2)
return cosine_similarity(vec1, vec2)
print(cosine('阿克蘇蘋果', '阿克蘇蘋果'))
當(dāng)前題目:python代碼如何實(shí)現(xiàn)余弦相似性計(jì)算-創(chuàng)新互聯(lián)
URL網(wǎng)址:http://chinadenli.net/article6/cddjig.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供App設(shè)計(jì)、做網(wǎng)站、網(wǎng)站內(nèi)鏈、網(wǎng)站設(shè)計(jì)公司、自適應(yīng)網(wǎng)站、云服務(wù)器
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)