欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

Tensorflow數(shù)據(jù)并行多GPU處理方法

這篇文章主要講解了“Tensorflow數(shù)據(jù)并行多GPU處理方法”,文中的講解內容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“Tensorflow數(shù)據(jù)并行多GPU處理方法”吧!

創(chuàng)新互聯(lián)建站堅持“要么做到,要么別承諾”的工作理念,服務領域包括:網(wǎng)站設計制作、成都網(wǎng)站建設、企業(yè)官網(wǎng)、英文網(wǎng)站、手機端網(wǎng)站、網(wǎng)站推廣等服務,滿足客戶于互聯(lián)網(wǎng)時代的蓮花網(wǎng)站設計、移動媒體設計的需求,幫助企業(yè)找到有效的互聯(lián)網(wǎng)解決方案。努力成為您成熟可靠的網(wǎng)絡建設合作伙伴!

如果我們用C++編寫程序只能應用在單個CPU核心上,當需要并行運行在多個GPU上時,我們需要從頭開始重新編寫程序。但是Tensorflow并非如此。因其具有符號性,Tensorflow可以隱藏所有這些復雜性,可輕松地將程序擴展到多個CPU和GPU。

例如在CPU上對兩個向量相加示例。

Tensorflow數(shù)據(jù)并行多GPU處理方法

同樣也可以在GPU上完成。

Tensorflow數(shù)據(jù)并行多GPU處理方法

  讓我們以更一般的形式重寫它。

Tensorflow數(shù)據(jù)并行多GPU處理方法

Tensorflow數(shù)據(jù)并行多GPU處理方法

上面就是用2塊GPU并行訓練來擬合一元二次函數(shù)。注意:當用多塊GPU時,模型的權重參數(shù)是被每個GPU同時共享的,所以在定義的時候我們需要使用tf.get_variable(),它和其他定義方式區(qū)別,我在之前文章里有講解過,在這里我就不多說了。大家自己親手試試吧。

感謝各位的閱讀,以上就是“Tensorflow數(shù)據(jù)并行多GPU處理方法”的內容了,經過本文的學習后,相信大家對Tensorflow數(shù)據(jù)并行多GPU處理方法這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是創(chuàng)新互聯(lián),小編將為大家推送更多相關知識點的文章,歡迎關注!

網(wǎng)頁標題:Tensorflow數(shù)據(jù)并行多GPU處理方法
當前地址:http://chinadenli.net/article48/ppjhep.html

成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站建設、網(wǎng)站排名、ChatGPT、App設計、面包屑導航、網(wǎng)站設計

廣告

聲明:本網(wǎng)站發(fā)布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯(lián)

成都定制網(wǎng)站建設