import math
讓客戶滿意是我們工作的目標(biāo),不斷超越客戶的期望值來自于我們對這個行業(yè)的熱愛。我們立志把好的技術(shù)通過有效、簡單的方式提供給客戶,將通過不懈努力成為客戶在信息化領(lǐng)域值得信任、有價值的長期合作伙伴,公司提供的服務(wù)項目有:國際域名空間、虛擬空間、營銷軟件、網(wǎng)站建設(shè)、工農(nóng)網(wǎng)站維護、網(wǎng)站推廣。
def erfenfa(function, a, b): #定義函數(shù),利用二分法求方程的根,function為具體方程,a,b為根的取值范圍
start = a
end = b
if function(a) == 0:?
return a
elif function(b) == 0:
return b
elif function(a) * function(b) 0:?
print("couldn't find root in [a,b]")
return
else:
mid = (start + end) / 2
while abs(start - mid) 0.0000001:?
if function(mid) == 0:
return mid
elif function(mid) * function(start) 0:
end = mid
else:
start = mid
mid = (start + end) / 2
return mid
def f(x):#定義構(gòu)造方程式函數(shù)
return math.pow(x, 5) -15*math.pow(x, 4) +85*math.pow(x, 3)-225*pow(x,2)+274*x - 121
print(round(erfenfa(f, 1.5, 2.4),6))
1:二分法
求根號5
a:折半:?????? 5/2=2.5
b:平方校驗:? 2.5*2.5=6.255,并且得到當(dāng)前上限2.5
c:再次向下折半:2.5/2=1.25
d:平方校驗:1.25*1.25=1.56255,得到當(dāng)前下限1.25
e:再次折半:2.5-(2.5-1.25)/2=1.875
f:平方校驗:1.875*1.875=3.5156255,得到當(dāng)前下限1.875
每次得到當(dāng)前值和5進行比較,并且記下下下限和上限,依次迭代,逐漸逼近平方根:
代碼如下:
import math
from math import sqrt
def sqrt_binary(num):
x=sqrt(num)
y=num/2.0
low=0.0
up=num*1.0
count=1
while abs(y-x)0.00000001:
print count,y
count+=1
if (y*ynum):
up=y
y=low+(y-low)/2
else:
low=y
y=up-(up-y)/2
return y
print(sqrt_binary(5))
print(sqrt(5))
2:牛頓迭代
仔細思考一下就能發(fā)現(xiàn),我們需要解決的問題可以簡單化理解。
從函數(shù)意義上理解:我們是要求函數(shù)f(x) = x2,使f(x) = num的近似解,即x2 - num = 0的近似解。
從幾何意義上理解:我們是要求拋物線g(x) = x2 - num與x軸交點(g(x) = 0)最接近的點。
我們假設(shè)g(x0)=0,即x0是正解,那么我們要做的就是讓近似解x不斷逼近x0,這是函數(shù)導(dǎo)數(shù)的定義:
從幾何圖形上看,因為導(dǎo)數(shù)是切線,通過不斷迭代,導(dǎo)數(shù)與x軸的交點會不斷逼近x0。
#includeiostream.h
#includemath.h
#includeconio.h
const int N=200;
//帶入原函數(shù)后所得的值
double f(float x)
{
return (x*x*x-1.8*x*x+0.15*x+0.65);
}
//帶入一階導(dǎo)函數(shù)后所得的值
double f1(double x)
{
return (3*x*x-3.6*x+0.15);
}
//牛頓迭代函數(shù)
double F(double x)
{
double x1;
x1=x-1.0*f(x)/f1(x);
return (x1);
}
void main()
{
double x0,D_value,x1,y[4];
int k=0,count=0;
for(;;)
{
if(count==3)break;
cout"輸入初始值:";
cinx0;
do
{
k++;
x1=F(x0);
D_value=fabs(x1-x0);
x0=x1;
}
while((D_value0.000005)(k=N));
for(int j=0,flag=0;jcount;j++)
{
if(fabs(y[j]-x1)0.000005)
{ flag=1;
cout"該數(shù)值附近的根已經(jīng)求出,請重新?lián)Q近似值"endl;
break;
}
}
if(flag==1)
continue;
else
{
cout"方程的一個根:"x1","" 迭代次數(shù)為:"kendl;
y[count]=x1;
count++;
}
//else
//cout"計算失敗!"endl;
}
}
//你的程序其實沒問題,牛頓迭代法本身循環(huán)一次只能找到一個答案,只要再建一個循環(huán)控制使
//用迭代法的次數(shù)和判斷根的個數(shù)就行。我又加了一個判斷是否有重復(fù)的根的循環(huán)。
//希望能對你有所幫助。
import numpy as np
def solve_quad(a,b,c):
if a == 0:
print('您輸入的不是二次方程!')
else:
delta = b*b-4*a*c
x = -b/(2*a)
if delta == 0:
print('方程有惟一解,X=%f'%(x))
return x
elif delta 0:
x1 = x-np.sqrt(delta)/(2*a)
x2 = x+np.sqrt(delta)/(2*a)
print('方程有兩個實根:X1=%f,X2=%f'%(x1,x2))
return x1,x2
else:
x1 = (-b+complex(0,1)*np.sqrt((-1)*delta))/(2*a)
x2 = (-b-complex(0,1)*np.sqrt((-1)*delta))/(2*a)
print(x1,x2)
return x1,x2
Python
是完全面向?qū)ο蟮恼Z言。函數(shù)、模塊、數(shù)字、字符串都是對象。并且完全支持繼承、重載、派生、多繼承,有益于增強源代碼的復(fù)用性。Python支持重載運算符和動態(tài)類型。相對于Lisp這種傳統(tǒng)的函數(shù)式編程語言,Python對函數(shù)式設(shè)計只提供了有限的支持。有兩個標(biāo)準(zhǔn)庫(functools, itertools)提供了Haskell和Standard ML中久經(jīng)考驗的函數(shù)式程序設(shè)計工具。
本文名稱:python求函數(shù)根 Python求根
文章出自:http://chinadenli.net/article48/dodedep.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供微信公眾號、微信小程序、網(wǎng)頁設(shè)計公司、做網(wǎng)站、靜態(tài)網(wǎng)站、關(guān)鍵詞優(yōu)化
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)