欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

opencv如何實現(xiàn)特定顏色線條提取與定位-創(chuàng)新互聯(lián)

這篇文章主要為大家展示了opencv如何實現(xiàn)特定顏色線條提取與定位,內(nèi)容簡而易懂,希望大家可以學習一下,學習完之后肯定會有收獲的,下面讓小編帶大家一起來看看吧。

創(chuàng)新互聯(lián)建站自2013年起,先為東阿等服務(wù)建站,東阿等地企業(yè),進行企業(yè)商務(wù)咨詢服務(wù)。為東阿企業(yè)網(wǎng)站制作PC+手機+微官網(wǎng)三網(wǎng)同步一站式服務(wù)解決您的所有建站問題。

主要步驟:

將RGB圖像轉(zhuǎn)化為HSV,H表示色調(diào)(度數(shù)表示0-180),S表示飽和度(取值0-255),V表示亮度(取值0-255),不同的顏色有著不同的取值范圍,一般給出如下:

設(shè)定待提取顏色的HSV范圍值,然后調(diào)用inRange函數(shù)實現(xiàn)對顏色空間的提取,該函數(shù)會將除目標顏色外的其余顏色為黑色背景,僅保留該顏色為前景

cv2.inRange(hsv, lower_red, upper_red)

參數(shù)解析:

第一個參數(shù):hsv指的是原圖

第二個參數(shù):lower_red指的是圖像中低于這個lower_red的值,圖像值變?yōu)?

第三個參數(shù):upper_red指的是圖像中高于這個upper_red的值,圖像值變?yōu)?

而在lower_red~upper_red之間的值變成255

二值化

腐蝕與膨脹操作,去除噪點,連接斷點

調(diào)用findContours函數(shù)進行輪廓檢測

cv2.findContours()函數(shù)接受的參數(shù)為二值圖,即黑白的(不是灰度圖)

cv2.findContours(image, mode, method[, contours[, hierarchy[, offset ]]])

參數(shù)解析

第一個參數(shù)是尋找輪廓的圖像;

第二個參數(shù)表示輪廓的檢索模式,有四種(本文介紹的都是新的cv2接口):

cv2.RETR_EXTERNAL表示只檢測外輪廓

cv2.RETR_LIST檢測的輪廓不建立等級關(guān)系

cv2.RETR_CCOMP建立兩個等級的輪廓,上面的一層為外邊界,里面的一層為內(nèi)孔的邊界信息。如果內(nèi)孔內(nèi)還有一個連通物體,這個物體的邊界也在頂層。

cv2.RETR_TREE建立一個等級樹結(jié)構(gòu)的輪廓。

第三個參數(shù)method為輪廓的近似辦法

cv2.CHAIN_APPROX_NONE存儲所有的輪廓點,相鄰的兩個點的像素位置差不超過1,即max(abs(x1-x2),abs(y2-y1))==1

cv2.CHAIN_APPROX_SIMPLE壓縮水平方向,垂直方向,對角線方向的元素,只保留該方向的終點坐標,例如一個矩形輪廓只需4個點來保存輪廓信息

cv2.CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法

返回值

cv2.findContours()函數(shù)返回三個值,一個是圖像,一個是輪廓本身,還有一個是每條輪廓對應(yīng)的屬性。

對于輪廓是以坐標的形式返回,可以通過函數(shù)cv2.drawContours()繪制出輪廓

繪制矩形區(qū)域?qū)喞M行定位

主要代碼如下:

import numpy as np
import cv2
import os
image = 'image1.jpg'
savefile = './mark1'
# image = os.listdir(image_file)
save_image = os.path.join(savefile, image)

#設(shè)定顏色HSV范圍,假定為紅色
redLower = np.array([156, 43, 46])
redUpper = np.array([179, 255, 255])

#讀取圖像
img = cv2.imread(image)

#將圖像轉(zhuǎn)化為HSV格式
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

#去除顏色范圍外的其余顏色
mask = cv2.inRange(hsv, redLower, redUpper)

# 二值化操作
ret, binary = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY)

#膨脹操作,因為是對線條進行提取定位,所以腐蝕可能會造成更大間隔的斷點,將線條切斷,因此僅做膨脹操作
kernel = np.ones((5, 5), np.uint8)
dilation = cv2.dilate(binary, kernel, iterations=1)

#獲取圖像輪廓坐標,其中contours為坐標值,此處只檢測外形輪廓
_, contours, hierarchy = cv2.findContours(dilation, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

if len(contours) > 0:
  #cv2.boundingRect()返回輪廓矩陣的坐標值,四個值為x, y, w, h, 其中x, y為左上角坐標,w,h為矩陣的寬和高
  boxes = [cv2.boundingRect(c) for c in contours]
  for box in boxes:
    x, y, w, h = box
    #繪制矩形框?qū)喞M行定位
    cv2.rectangle(img, (x, y), (x+w, y+h), (153, 153, 0), 2)
	#將繪制的圖像保存并展示
	cv2.imwrite(save_image, img)
	cv2.imshow('image', img)
	cv2.waitKey(0)
	cv2.destroyAllWindows()

網(wǎng)頁名稱:opencv如何實現(xiàn)特定顏色線條提取與定位-創(chuàng)新互聯(lián)
分享URL:http://chinadenli.net/article44/cdgghe.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站排名網(wǎng)站導航搜索引擎優(yōu)化App開發(fā)面包屑導航自適應(yīng)網(wǎng)站

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

外貿(mào)網(wǎng)站建設(shè)