本篇內(nèi)容介紹了“WordCount MapReduce怎么使用”的有關(guān)知識(shí),在實(shí)際案例的操作過(guò)程中,不少人都會(huì)遇到這樣的困境,接下來(lái)就讓小編帶領(lǐng)大家學(xué)習(xí)一下如何處理這些情況吧!希望大家仔細(xì)閱讀,能夠?qū)W有所成!

為惠民等地區(qū)用戶提供了全套網(wǎng)頁(yè)設(shè)計(jì)制作服務(wù),及惠民網(wǎng)站建設(shè)行業(yè)解決方案。主營(yíng)業(yè)務(wù)為成都網(wǎng)站制作、成都網(wǎng)站建設(shè)、外貿(mào)營(yíng)銷網(wǎng)站建設(shè)、惠民網(wǎng)站設(shè)計(jì),以傳統(tǒng)方式定制建設(shè)網(wǎng)站,并提供域名空間備案等一條龍服務(wù),秉承以專業(yè)、用心的態(tài)度為用戶提供真誠(chéng)的服務(wù)。我們深信只要達(dá)到每一位用戶的要求,就會(huì)得到認(rèn)可,從而選擇與我們長(zhǎng)期合作。這樣,我們也可以走得更遠(yuǎn)!
package org.myorg;
import java.io.*;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;
public class WordCount extends Configured implements Tool {
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
static enum Counters {INPUT_WORDS}
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
private boolean caseSensitive = true;
private Set<String> patternsToSkip = new HashSet<String>();
private long numRecords = 0;
private String inputFile;
public void configure(JobConf job) {
caseSensitive = job.getBoolean("wordcount.case.sensitive", true);
inputFile = job.get("map.input.file");
if (job.getBoolean("wordcount.skip.patterns", false)) {
Path[] patternsFiles = new Path[0];
try {
patternsFiles = DistributedCache.getLocalCacheFiles(job);
} catch (IOException ioe) {
System.err.println("Caught exception while getting cached files: " + StringUtils.stringifyException(ioe));
}
for (Path patternsFile : patternsFiles) {
parseSkipFile(patternsFile);
}
}
}
private void parseSkipFile(Path patternsFile) {
try {
BufferedReader fis = new BufferedReader(new FileReader(patternsFile.toString()));
String pattern = null;
while ((pattern = fis.readLine()) != null) {
patternsToSkip.add(pattern);
}
} catch (IOException ioe) {
System.err.println("Caught exception while parsing the cached file '" + patternsFile + "' : " + StringUtils.stringifyException(ioe));
}
}
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
String line = (caseSensitive) ? value.toString() : value.toString().toLowerCase();
for (String pattern : patternsToSkip) {
line = line.replaceAll(pattern, "");
}
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);
reporter.incrCounter(Counters.INPUT_WORDS, 1);
}
if ((++numRecords % 100) == 0) {
reporter.setStatus("Finished processing " + numRecords + " records " + "from the input file: " + inputFile);
}
}
}
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
public int run(String[] args) throws Exception {
JobConf conf = new JobConf(getConf(), WordCount.class);
conf.setJobName("wordcount");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
List<String> other_args = new ArrayList<String>();
for (int i = 0; i < args.length; ++i) {
if ("-skip".equals(args[i])) {
DistributedCache.addCacheFile(new Path(args[++i]).toUri(), conf);
conf.setBoolean("wordcount.skip.patterns", true);
} else {
other_args.add(args[i]);
}
}
FileInputFormat.setInputPaths(conf, new Path(other_args.get(0)));
FileOutputFormat.setOutputPath(conf, new Path(other_args.get(1)));
JobClient.runJob(conf);
return 0;
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new WordCount(), args);
System.exit(res);
}
}“WordCount MapReduce怎么使用”的內(nèi)容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業(yè)相關(guān)的知識(shí)可以關(guān)注創(chuàng)新互聯(lián)網(wǎng)站,小編將為大家輸出更多高質(zhì)量的實(shí)用文章!
當(dāng)前文章:WordCountMapReduce怎么使用
當(dāng)前路徑:http://chinadenli.net/article42/gdjshc.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站策劃、面包屑導(dǎo)航、ChatGPT、App開(kāi)發(fā)、靜態(tài)網(wǎng)站、服務(wù)器托管
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)