一個非常簡單的遺傳算法源代碼,是由Denis Cormier (North Carolina State University)開發(fā)的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代碼保證盡可能少,實際上也不必查錯。對一特定的應用修正此代碼,用戶只需改變常數的定義并且定義“評價函數”即可。注意代碼的設計是求最大值,其中的目標函數只能取正值;且函數值和個體的適應值之間沒有區(qū)別。該系統(tǒng)使用比率選擇、精華模型、單點雜交和均勻變異。如果用Gaussian變異替換均勻變異,可能得到更好的效果。代碼沒有任何圖形,甚至也沒有屏幕輸出,主要是保證在平臺之間的高可移植性。讀者可以從,目錄 coe/evol中的文件prog.c中獲得。要求輸入的文件應該命名為‘gadata.txt’;系統(tǒng)產生的輸出文件為‘galog.txt’。輸入的文件由幾行組成:數目對應于變量數。且每一行提供次序——對應于變量的上下界。如第一行為第一個變量提供上下界,第二行為第二個變量提供上下界,等等。

創(chuàng)新互聯(lián)建站是一家專業(yè)提供岱山企業(yè)網站建設,專注與網站設計制作、網站設計、html5、小程序制作等業(yè)務。10年已為岱山眾多企業(yè)、政府機構等服務。創(chuàng)新互聯(lián)專業(yè)的建站公司優(yōu)惠進行中。
/**************************************************************************/
/* This is a simple genetic algorithm implementation where the */
/* evaluation function takes positive values only and the */
/* fitness of an individual is the same as the value of the */
/* objective function */
/**************************************************************************/
#include stdio.h
#include stdlib.h
#include math.h
/* Change any of these parameters to match your needs */
#define POPSIZE 50 /* population size */
#define MAXGENS 1000 /* max. number of generations */
#define NVARS 3 /* no. of problem variables */
#define PXOVER 0.8 /* probability of crossover */
#define PMUTATION 0.15 /* probability of mutation */
#define TRUE 1
#define FALSE 0
int generation; /* current generation no. */
int cur_best; /* best individual */
FILE *galog; /* an output file */
struct genotype /* genotype (GT), a member of the population */
{
double gene[NVARS]; /* a string of variables */
double fitness; /* GT's fitness */
double upper[NVARS]; /* GT's variables upper bound */
double lower[NVARS]; /* GT's variables lower bound */
double rfitness; /* relative fitness */
double cfitness; /* cumulative fitness */
};
struct genotype population[POPSIZE+1]; /* population */
struct genotype newpopulation[POPSIZE+1]; /* new population; */
/* replaces the */
/* old generation */
/* Declaration of procedures used by this genetic algorithm */
void initialize(void);
double randval(double, double);
void evaluate(void);
void keep_the_best(void);
void elitist(void);
void select(void);
void crossover(void);
void Xover(int,int);
void swap(double *, double *);
void mutate(void);
void report(void);
/***************************************************************/
/* Initialization function: Initializes the values of genes */
/* within the variables bounds. It also initializes (to zero) */
/* all fitness values for each member of the population. It */
/* reads upper and lower bounds of each variable from the */
/* input file `gadata.txt'. It randomly generates values */
/* between these bounds for each gene of each genotype in the */
/* population. The format of the input file `gadata.txt' is */
/* var1_lower_bound var1_upper bound */
/* var2_lower_bound var2_upper bound ... */
/***************************************************************/
void initialize(void)
{
FILE *infile;
int i, j;
double lbound, ubound;
if ((infile = fopen("gadata.txt","r"))==NULL)
{
fprintf(galog,"\nCannot open input file!\n");
exit(1);
}
/* initialize variables within the bounds */
for (i = 0; i NVARS; i++)
{
fscanf(infile, "%lf",lbound);
fscanf(infile, "%lf",ubound);
for (j = 0; j POPSIZE; j++)
{
population[j].fitness = 0;
population[j].rfitness = 0;
population[j].cfitness = 0;
population[j].lower[i] = lbound;
population[j].upper[i]= ubound;
population[j].gene[i] = randval(population[j].lower[i],
population[j].upper[i]);
}
}
fclose(infile);
}
/***********************************************************/
/* Random value generator: Generates a value within bounds */
/***********************************************************/
double randval(double low, double high)
{
double val;
val = ((double)(rand()%1000)/1000.0)*(high - low) + low;
return(val);
}
/*************************************************************/
/* Evaluation function: This takes a user defined function. */
/* Each time this is changed, the code has to be recompiled. */
/* The current function is: x[1]^2-x[1]*x[2]+x[3] */
/*************************************************************/
void evaluate(void)
{
int mem;
int i;
double x[NVARS+1];
for (mem = 0; mem POPSIZE; mem++)
{
for (i = 0; i NVARS; i++)
x[i+1] = population[mem].gene[i];
population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3];
}
}
/***************************************************************/
/* Keep_the_best function: This function keeps track of the */
/* best member of the population. Note that the last entry in */
/* the array Population holds a copy of the best individual */
/***************************************************************/
void keep_the_best()
{
int mem;
int i;
cur_best = 0; /* stores the index of the best individual */
for (mem = 0; mem POPSIZE; mem++)
{
if (population[mem].fitness population[POPSIZE].fitness)
{
cur_best = mem;
population[POPSIZE].fitness = population[mem].fitness;
}
}
/* once the best member in the population is found, copy the genes */
for (i = 0; i NVARS; i++)
population[POPSIZE].gene[i] = population[cur_best].gene[i];
}
/****************************************************************/
/* Elitist function: The best member of the previous generation */
/* is stored as the last in the array. If the best member of */
/* the current generation is worse then the best member of the */
/* previous generation, the latter one would replace the worst */
/* member of the current population */
/****************************************************************/
void elitist()
{
int i;
double best, worst; /* best and worst fitness values */
int best_mem, worst_mem; /* indexes of the best and worst member */
best = population[0].fitness;
worst = population[0].fitness;
for (i = 0; i POPSIZE - 1; ++i)
{
if(population[i].fitness population[i+1].fitness)
{
if (population[i].fitness = best)
{
best = population[i].fitness;
best_mem = i;
}
if (population[i+1].fitness = worst)
{
worst = population[i+1].fitness;
worst_mem = i + 1;
}
}
else
{
if (population[i].fitness = worst)
{
worst = population[i].fitness;
worst_mem = i;
}
if (population[i+1].fitness = best)
{
best = population[i+1].fitness;
best_mem = i + 1;
}
}
}
/* if best individual from the new population is better than */
/* the best individual from the previous population, then */
/* copy the best from the new population; else replace the */
/* worst individual from the current population with the */
/* best one from the previous generation */
if (best = population[POPSIZE].fitness)
{
for (i = 0; i NVARS; i++)
population[POPSIZE].gene[i] = population[best_mem].gene[i];
population[POPSIZE].fitness = population[best_mem].fitness;
}
else
{
for (i = 0; i NVARS; i++)
population[worst_mem].gene[i] = population[POPSIZE].gene[i];
population[worst_mem].fitness = population[POPSIZE].fitness;
}
}
/**************************************************************/
/* Selection function: Standard proportional selection for */
/* maximization problems incorporating elitist model - makes */
/* sure that the best member survives */
/**************************************************************/
void select(void)
{
int mem, i, j, k;
double sum = 0;
double p;
/* find total fitness of the population */
for (mem = 0; mem POPSIZE; mem++)
{
sum += population[mem].fitness;
}
/* calculate relative fitness */
for (mem = 0; mem POPSIZE; mem++)
{
population[mem].rfitness = population[mem].fitness/sum;
}
population[0].cfitness = population[0].rfitness;
/* calculate cumulative fitness */
for (mem = 1; mem POPSIZE; mem++)
{
population[mem].cfitness = population[mem-1].cfitness +
population[mem].rfitness;
}
/* finally select survivors using cumulative fitness. */
for (i = 0; i POPSIZE; i++)
{
p = rand()%1000/1000.0;
if (p population[0].cfitness)
newpopulation[i] = population[0];
else
{
for (j = 0; j POPSIZE;j++)
if (p = population[j].cfitness
ppopulation[j+1].cfitness)
newpopulation[i] = population[j+1];
}
}
/* once a new population is created, copy it back */
for (i = 0; i POPSIZE; i++)
population[i] = newpopulation[i];
}
/***************************************************************/
/* Crossover selection: selects two parents that take part in */
/* the crossover. Implements a single point crossover */
/***************************************************************/
void crossover(void)
{
int i, mem, one;
int first = 0; /* count of the number of members chosen */
double x;
for (mem = 0; mem POPSIZE; ++mem)
{
x = rand()%1000/1000.0;
if (x PXOVER)
{
++first;
if (first % 2 == 0)
Xover(one, mem);
else
one = mem;
}
}
}
/**************************************************************/
/* Crossover: performs crossover of the two selected parents. */
/**************************************************************/
void Xover(int one, int two)
{
int i;
int point; /* crossover point */
/* select crossover point */
if(NVARS 1)
{
if(NVARS == 2)
point = 1;
else
point = (rand() % (NVARS - 1)) + 1;
for (i = 0; i point; i++)
swap(population[one].gene[i], population[two].gene[i]);
}
}
/*************************************************************/
/* Swap: A swap procedure that helps in swapping 2 variables */
/*************************************************************/
void swap(double *x, double *y)
{
double temp;
temp = *x;
*x = *y;
*y = temp;
}
/**************************************************************/
/* Mutation: Random uniform mutation. A variable selected for */
/* mutation is replaced by a random value between lower and */
/* upper bounds of this variable */
/**************************************************************/
void mutate(void)
{
int i, j;
double lbound, hbound;
double x;
for (i = 0; i POPSIZE; i++)
for (j = 0; j NVARS; j++)
{
x = rand()%1000/1000.0;
if (x PMUTATION)
{
/* find the bounds on the variable to be mutated */
lbound = population[i].lower[j];
hbound = population[i].upper[j];
population[i].gene[j] = randval(lbound, hbound);
}
}
}
/***************************************************************/
/* Report function: Reports progress of the simulation. Data */
/* dumped into the output file are separated by commas */
/***************************************************************/
。。。。。
代碼太多 你到下面呢個網站看看吧
void main(void)
{
int i;
if ((galog = fopen("galog.txt","w"))==NULL)
{
exit(1);
}
generation = 0;
fprintf(galog, "\n generation best average standard \n");
fprintf(galog, " number value fitness deviation \n");
initialize();
evaluate();
keep_the_best();
while(generationMAXGENS)
{
generation++;
select();
crossover();
mutate();
report();
evaluate();
elitist();
}
fprintf(galog,"\n\n Simulation completed\n");
fprintf(galog,"\n Best member: \n");
for (i = 0; i NVARS; i++)
{
fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]);
}
fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness);
fclose(galog);
printf("Success\n");
}
#include?stdio.h
#include?stdlib.h
int?main(int?argc,?char?const?*argv[])
{
int?a,?b;?
printf("請輸入一次方程的系數a和b(以逗號隔開):");
scanf("%d,%d",?a,?b);
if?(a?==?0);??//分母為0,無解
else
{
char?ch?=?b??0???'-'?:?'+';
printf("%dx%c%d=0的根是:x=",?a,?ch,?abs(b));?
printf("%d\n",?-b?/?a);
}
return?0;
}
% 2008年4月12日修改
%**********************%主函數*****************************************
function main()
global chrom lchrom oldpop newpop varible fitness popsize sumfitness %定義全局變量
global pcross pmutation temp bestfit maxfit gen bestgen length epop efitness val varible2 varible1
global maxgen po pp mp np val1
length=18;
lchrom=30; %染色體長度
popsize=30; %種群大小
pcross=0.6; %交叉概率
pmutation=0.01; %變異概率
maxgen=1000; %最大代數
mp=0.1; %保護概率
%
initpop; % 初始種群
%
for gen=1:maxgen
generation;
end
%
best;
bestfit % 最佳個體適應度值輸出
bestgen % 最佳個體所在代數輸出
x1= val1(bestgen,1)
x2= val1(bestgen,2)
gen=1:maxgen;
figure
plot(gen,maxfit(1,gen)); % 進化曲線
title('精英保留');
%
%********************** 產生初始種群 ************************************
%
function initpop()
global lchrom oldpop popsize
oldpop=round(rand(popsize,lchrom)); %生成的oldpop為30行12列由0,1構成的矩陣
%其中popsize為種群中個體數目lchrom為染色體編碼長度
%
%*************************%產生新一代個體**********************************
%
function generation()
global epop oldpop popsize mp
objfun; %計算適應度值
n=floor(mp*popsize); %需要保留的n個精英個體
for i=1:n
epop(i,:)=oldpop((popsize-n+i),:);
% efitness(1,i)=fitness(1,(popsize-n+i))
end
select; %選擇操作
crossover;
mutation;
elite; %精英保留
%
%************************%計算適應度值************************************
%
function objfun()
global lchrom oldpop fitness popsize chrom varible varible1 varible2 length
global maxfit gen epop mp val1
a1=-3; b1=3;
a2=-2;b2=2;
fitness=0;
for i=1:popsize
%前一未知數X1
if length~=0
chrom=oldpop(i,1:length);% before代表節(jié)點位置
c=decimal(chrom);
varible1(1,i)=a1+c*(b1-a1)/(2.^length-1); %對應變量值
%后一未知數
chrom=oldpop(i,length+1:lchrom);% before代表節(jié)點位置
c=decimal(chrom);
varible2(1,i)=a2+c*(b2-a2)/(2.^(lchrom-length)-1); %對應變量值
else
chrom=oldpop(i,:);
c=decimal(chrom);
varible(1,i)=a1+c*(b1-a1)/(2.^lchrom-1); %對應變量值
end
%兩個自變量
fitness(1,i)=4*varible1(1,i)^2-2.1*varible1(1,i)^4+1/3*varible1(1,i)^6+varible1(1,i)*varible2(1,i)-4*varible2(1,i)^2+4*varible2(1,i)^4;
%fitness(1,i) = 21.5+varible1(1,i)*sin(4*pi*varible1(1,i))+varible2(1,i) *sin(20*pi*varible2(1,i));
%一個自變量
%fitness(1,i) = 20*cos(0.25*varible(1,i))-12*sin(0.33*varible(1,i))+40 %個體適應度函數值
end
lsort; % 個體排序
maxfit(1,gen)=max(fitness); %求本代中的最大適應度值maxfit
val1(gen,1)=varible1(1,popsize);
val1(gen,2)=varible2(1,popsize);
%************************二進制轉十進制**********************************
%
function c=decimal(chrom)
c=0;
for j=1:size(chrom,2)
c=c+chrom(1,j)*2.^(size(chrom,2)-j);
end
%
%************************* 個體排序 *****************************
% 從小到大順序排列
%
function lsort()
global popsize fitness oldpop epop efitness mp val varible2 varible1
for i=1:popsize
j=i+1;
while j=popsize
if fitness(1,i)fitness(1,j)
tf=fitness(1,i); % 適應度值
tc=oldpop(i,:); % 基因代碼
fitness(1,i)=fitness(1,j); % 適應度值互換
oldpop(i,:)=oldpop(j,:); % 基因代碼互換
fitness(1,j)=tf;
oldpop(j,:)=tc;
end
j=j+1;
end
val(1,1)=varible1(1,popsize);
val(1,2)=varible2(1,popsize);
end
%*************************轉輪法選擇操作**********************************
%
function select()
global fitness popsize sumfitness oldpop temp mp np
sumfitness=0; %個體適應度之和
for i=1:popsize % 僅計算(popsize-np-mp)個個體的選擇概率
sumfitness=sumfitness+fitness(1,i);
end
%
for i=1:popsize % 僅計算(popsize-np-mp)個個體的選擇概率
p(1,i)=fitness(1,i)/sumfitness; % 個體染色體的選擇概率
end
%
q=cumsum(p); % 個體染色體的累積概率(內部函數),共(popsize-np-mp)個
%
b=sort(rand(1,popsize)); % 產生(popsize-mp)個隨機數,并按升序排列。mp為保護個體數
j=1;
k=1;
while j=popsize % 從(popsize-mp-np)中選出(popsize-mp)個個體,并放入temp(j,:)中;
if b(1,j)q(1,k)
temp(j,:)=oldpop(k,:);
j=j+1;
else
k=k+1;
end
end
%
j=popsize+1; % 從統(tǒng)一挪過來的(popsize-np-mp)以后個體——優(yōu)秀個體中選擇
for i=(popsize+1):popsize % 將mp個保留個體放入交配池temp(i,:),以保證群體數popsize
temp(i,:)=oldpop(j,:);
j=j+1;
end
%
%**************************%交叉操作***************************************
%
function crossover()
global temp popsize pcross lchrom mp
n=floor(pcross*popsize); %交叉發(fā)生的次數(向下取整)
if rem(n,2)~=0 % 求余
n=n+1; % 保證為偶數個個體,便于交叉操作
end
%
j=1;
m=0;
%
% 對(popsize-mp)個個體將進行隨機配對,滿足條件者將進行交叉操作(按順序選擇要交叉的對象)
%
for i=1:popsize
p=rand; % 產生隨機數
if ppcross % 滿足交叉條件
parent(j,:)=temp(i,:); % 選出1個父本
k(1,j)=i;
j=j+1; % 記錄父本個數
m=m+1 ; % 記錄雜交次數
if (j==3)(m=n) % 滿足兩個父本(j==3),未超過交叉次數(m=n)
pos=round(rand*(lchrom-1))+1; % 確定隨機位數(四舍五入取整)
for i=1:pos
child1(1,i)=parent(1,i);
child2(1,i)=parent(2,i);
end
for i=(pos+1):lchrom
child1(1,i)=parent(2,i);
child2(1,i)=parent(1,i);
end
i=k(1,1);
j=k(1,2);
temp(i,:)=child1(1,:);
temp(j,:)=child2(1,:);
j=1;
end
end
end
%
%****************************%變異操作*************************************
%
function mutation()
global popsize lchrom pmutation temp newpop oldpop mp
m=lchrom*popsize; % 總的基因數
n=round(pmutation*m); % 變異發(fā)生的次數
for i=1:n % 執(zhí)行變異操作循環(huán)
k=round(rand*(m-1))+1; %確定變異位置(四舍五入取整)
j=ceil(k/lchrom); % 確定個體編號(取整)
l=rem(k,lchrom); %確定個體中變位基因的位置(求余)
if l==0
temp(j,lchrom)=~temp(j,lchrom); % 取非操作
else
temp(j,l)=~temp(j,l); % 取非操作
end
end
for i=1:popsize
oldpop(i,:)=temp(i,:); %產生新的個體
end
%
%*********************%精英選擇%*******************************************
%
function elite()
global epop oldpop mp popsize
objfun; %計算適應度值
n=floor(mp*popsize); %需要保留的n個精英個體
for i=1:n
oldpop(i,:)=epop(i,:);
% efitness(1,i)=fitness(1,(popsize-n+i))
end;
%
%*********************%最佳個體********************************************
%
function best()
global maxfit bestfit gen maxgen bestgen
bestfit=maxfit(1,1);
gen=2;
while gen=maxgen
if bestfitmaxfit(1,gen)
bestfit=maxfit(1,gen);
bestgen=gen;
end
gen=gen+1;
end
%**************************************************************************
名稱欄目:c語言遺傳算法二元函數,C語言遺傳算法
分享路徑:http://chinadenli.net/article39/dsegsph.html
成都網站建設公司_創(chuàng)新互聯(lián),為您提供建站公司、網站維護、品牌網站制作、云服務器、定制開發(fā)、外貿網站建設
聲明:本網站發(fā)布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯(lián)