在神經(jīng)網(wǎng)絡(luò)訓(xùn)練中,我們常常需要畫出loss function的變化圖,log日志里會顯示每一次迭代的loss function的值,于是我們先把log日志保存為log.txt文檔,再利用這個文檔來畫圖。

1,先來產(chǎn)生一個log日志。
import mxnet as mx
import numpy as np
import os
import logging
logging.getLogger().setLevel(logging.DEBUG)
# Training data
logging.basicConfig(filename = os.path.join(os.getcwd(), 'log.txt'), level = logging.DEBUG) # 把log日志保存為log.txt
train_data = np.random.uniform(0, 1, [100, 2])
train_label = np.array([train_data[i][0] + 2 * train_data[i][1] for i in range(100)])
batch_size = 1
num_epoch=5
# Evaluation Data
eval_data = np.array([[7,2],[6,10],[12,2]])
eval_label = np.array([11,26,16])
train_iter = mx.io.NDArrayIter(train_data,train_label, batch_size, shuffle=True,label_name='lin_reg_label')
eval_iter = mx.io.NDArrayIter(eval_data, eval_label, batch_size, shuffle=False)
X = mx.sym.Variable('data')
Y = mx.sym.Variable('lin_reg_label')
fully_connected_layer = mx.sym.FullyConnected(data=X, name='fc1', num_hidden = 1)
lro = mx.sym.LinearRegressionOutput(data=fully_connected_layer, label=Y, name="lro")
model = mx.mod.Module(
symbol = lro ,
data_names=['data'],
label_names = ['lin_reg_label'] # network structure
)
model.fit(train_iter, eval_iter,
optimizer_params={'learning_rate':0.005, 'momentum': 0.9},
num_epoch=20,
eval_metric='mse',)
model.predict(eval_iter).asnumpy()
metric = mx.metric.MSE()
model.score(eval_iter, metric)
標(biāo)題名稱:python保存log日志,實現(xiàn)用log日志畫圖-創(chuàng)新互聯(lián)
鏈接URL:http://chinadenli.net/article38/pcesp.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供用戶體驗、外貿(mào)網(wǎng)站建設(shè)、網(wǎng)站維護、域名注冊、品牌網(wǎng)站設(shè)計、Google
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)
猜你還喜歡下面的內(nèi)容