Python的學習內(nèi)容還是比較多的,我們將學習的過程劃分為4個階段,每個階段學習對應(yīng)的內(nèi)容,具體的學習順序如下:

創(chuàng)新互聯(lián)公司是專業(yè)的自貢網(wǎng)站建設(shè)公司,自貢接單;提供網(wǎng)站設(shè)計、成都網(wǎng)站制作,網(wǎng)頁設(shè)計,網(wǎng)站設(shè)計,建網(wǎng)站,PHP網(wǎng)站建設(shè)等專業(yè)做網(wǎng)站服務(wù);采用PHP框架,可快速的進行自貢網(wǎng)站開發(fā)網(wǎng)頁制作和功能擴展;專業(yè)做搜索引擎喜愛的網(wǎng)站,專業(yè)的做網(wǎng)站團隊,希望更多企業(yè)前來合作!
Python學習順序:
①Python軟件開發(fā)基礎(chǔ)
掌握計算機的構(gòu)成和工作原理
會使用Linux常用工具
熟練使用Docker的基本命令
建立Python開發(fā)環(huán)境,并使用print輸出
使用Python完成字符串的各種操作
使用Python re模塊進行程序設(shè)計
使用Python創(chuàng)建文件、訪問、刪除文件
掌握import 語句、From…import 語句、From…import* 語句、方法的引用、Python中的包
②Python軟件開發(fā)進階
能夠使用Python面向?qū)ο蠓椒ㄩ_發(fā)軟件
能夠自己建立數(shù)據(jù)庫,表,并進行基本數(shù)據(jù)庫操作
掌握非關(guān)系數(shù)據(jù)庫MongoDB的使用,掌握Redis開發(fā)
能夠獨立完成TCP/UDP服務(wù)端客戶端軟件開發(fā),能夠?qū)崿F(xiàn)ftp、http服務(wù)器,開發(fā)郵件軟件
能開發(fā)多進程、多線程軟件
③Python全棧式WEB工程師
能夠獨立完成后端軟件開發(fā),深入理解Python開發(fā)后端的精髓
能夠獨立完成前端軟件開發(fā),并和后端結(jié)合,熟練掌握使用Python進行全站W(wǎng)eb開發(fā)的技巧
④Python多領(lǐng)域開發(fā)
能夠使用Python熟練編寫爬蟲軟件
能夠熟練使用Python庫進行數(shù)據(jù)分析
招聘網(wǎng)站Python招聘職位數(shù)據(jù)爬取分析
掌握使用Python開源人工智能框架進行人工智能軟件開發(fā)、語音識別、人臉識別
掌握基本設(shè)計模式、常用算法
掌握軟件工程、項目管理、項目文檔、軟件測試調(diào)優(yōu)的基本方法
互聯(lián)網(wǎng)行業(yè)目前還是最熱門的行業(yè)之一,學習IT技能之后足夠優(yōu)秀是有機會進入騰訊、阿里、網(wǎng)易等互聯(lián)網(wǎng)大廠高薪就業(yè)的,發(fā)展前景非常好,普通人也可以學習。
想要系統(tǒng)學習,你可以考察對比一下開設(shè)有相關(guān)專業(yè)的熱門學校,好的學校擁有根據(jù)當下企業(yè)需求自主研發(fā)課程的能力,中博軟件學院、南京課工場、南京北大青鳥等開設(shè)python專業(yè)的學校都是不錯的,建議實地考察對比一下。
祝你學有所成,望采納。
請點擊輸入圖片描述
scipy做線性規(guī)劃不是很方便,推薦用pulp來做,這個模塊不屬于python的內(nèi)置模塊,需要先安裝,pip install pulp
from pulp import *
# 設(shè)置對象
prob = LpProblem('myProblem', LpMinimize)
# 設(shè)置三個變量,并設(shè)置變量最小取值
x1 = LpVariable('x1', 0)
x2 = LpVariable('x2', 0)
x3 = LpVariable('x3', 0)
x4 = LpVariable('x4')
# 載入目標函數(shù),默認是求最小值,因此這次對原目標函數(shù)乘以-1
prob += 3*x1 - 4*x2 + 2*x3 -5*x4
# 載入約束變量
prob += 4*x1 - x2 + 2*x3 -x4 == -2
prob += x1 + x2 -x3 + 2*x4 = 14
prob += -2*x1 + 3*x2 + x3 -x4 = 2
# 求解
status = prob.solve()
# 顯示結(jié)果
for i in prob.variables():
print(i.name + "=" + str(i.varValue))
計算結(jié)果為:
x1=0.0
x2=2.0
x3=4.0
x4=8.0
首先謝謝邀請,
python中有的算法還是比較多的?
python之所以火是因為人工智能的發(fā)展,人工智能的發(fā)展離不開算法!
感覺有本書比較適合你,不過可惜的是這本書沒有電子版,只有紙質(zhì)的。
這本書對于算法從基本的入門到實現(xiàn),循序漸進的介紹,比如里面就涵蓋了數(shù)學建模的常用算法。
第 1章 從數(shù)學建模到人工智能
1.1 數(shù)學建模1.1.1 數(shù)學建模與人工智能1.1.2 數(shù)學建模中的常見問題1.2 人工智能下的數(shù)學1.2.1 統(tǒng)計量1.2.2 矩陣概念及運算1.2.3 概率論與數(shù)理統(tǒng)計1.2.4 高等數(shù)學——導數(shù)、微分、不定積分、定積分
第2章 Python快速入門
2.1 安裝Python2.1.1 Python安裝步驟2.1.2 IDE的選擇2.2 Python基本操作2.2.1 第 一個小程序2.2.2 注釋與格式化輸出2.2.3 列表、元組、字典2.2.4 條件語句與循環(huán)語句2.2.5 break、continue、pass2.3 Python高級操作2.3.1 lambda2.3.2 map2.3.3 filter
第3章 Python科學計算庫NumPy
3.1 NumPy簡介與安裝3.1.1 NumPy簡介3.1.2 NumPy安裝3.2 基本操作3.2.1 初識NumPy3.2.2 NumPy數(shù)組類型3.2.3 NumPy創(chuàng)建數(shù)組3.2.4 索引與切片3.2.5 矩陣合并與分割3.2.6 矩陣運算與線性代數(shù)3.2.7 NumPy的廣播機制3.2.8 NumPy統(tǒng)計函數(shù)3.2.9 NumPy排序、搜索3.2.10 NumPy數(shù)據(jù)的保存
第4章 常用科學計算模塊快速入門
4.1 Pandas科學計算庫4.1.1 初識Pandas4.1.2 Pandas基本操作4.2 Matplotlib可視化圖庫4.2.1 初識Matplotlib4.2.2 Matplotlib基本操作4.2.3 Matplotlib繪圖案例4.3 SciPy科學計算庫4.3.1 初識SciPy4.3.2 SciPy基本操作4.3.3 SciPy圖像處理案例第5章 Python網(wǎng)絡(luò)爬蟲5.1 爬蟲基礎(chǔ)5.1.1 初識爬蟲5.1.2 網(wǎng)絡(luò)爬蟲的算法5.2 爬蟲入門實戰(zhàn)5.2.1 調(diào)用API5.2.2 爬蟲實戰(zhàn)5.3 爬蟲進階—高效率爬蟲5.3.1 多進程5.3.2 多線程5.3.3 協(xié)程5.3.4 小結(jié)
第6章 Python數(shù)據(jù)存儲
6.1 關(guān)系型數(shù)據(jù)庫MySQL6.1.1 初識MySQL6.1.2 Python操作MySQL6.2 NoSQL之MongoDB6.2.1 初識NoSQL6.2.2 Python操作MongoDB6.3 本章小結(jié)6.3.1 數(shù)據(jù)庫基本理論6.3.2 數(shù)據(jù)庫結(jié)合6.3.3 結(jié)束語
第7章 Python數(shù)據(jù)分析
7.1 數(shù)據(jù)獲取7.1.1 從鍵盤獲取數(shù)據(jù)7.1.2 文件的讀取與寫入7.1.3 Pandas讀寫操作7.2 數(shù)據(jù)分析案例7.2.1 普查數(shù)據(jù)統(tǒng)計分析案例7.2.2 小結(jié)
第8章 自然語言處理
8.1 Jieba分詞基礎(chǔ)8.1.1 Jieba中文分詞8.1.2 Jieba分詞的3種模式8.1.3 標注詞性與添加定義詞8.2 關(guān)鍵詞提取8.2.1 TF-IDF關(guān)鍵詞提取8.2.2 TextRank關(guān)鍵詞提取8.3 word2vec介紹8.3.1 word2vec基礎(chǔ)原理簡介8.3.2 word2vec訓練模型8.3.3 基于gensim的word2vec實戰(zhàn)
第9章 從回歸分析到算法基礎(chǔ)
9.1 回歸分析簡介9.1.1 “回歸”一詞的來源9.1.2 回歸與相關(guān)9.1.3 回歸模型的劃分與應(yīng)用9.2 線性回歸分析實戰(zhàn)9.2.1 線性回歸的建立與求解9.2.2 Python求解回歸模型案例9.2.3 檢驗、預測與控制
第10章 從K-Means聚類看算法調(diào)參
10.1 K-Means基本概述10.1.1 K-Means簡介10.1.2 目標函數(shù)10.1.3 算法流程10.1.4 算法優(yōu)缺點分析10.2 K-Means實戰(zhàn)
第11章 從決策樹看算法升級
11.1 決策樹基本簡介11.2 經(jīng)典算法介紹11.2.1 信息熵11.2.2 信息增益11.2.3 信息增益率11.2.4 基尼系數(shù)11.2.5 小結(jié)11.3 決策樹實戰(zhàn)11.3.1 決策樹回歸11.3.2 決策樹的分類
第12章 從樸素貝葉斯看算法多變 193
12.1 樸素貝葉斯簡介12.1.1 認識樸素貝葉斯12.1.2 樸素貝葉斯分類的工作過程12.1.3 樸素貝葉斯算法的優(yōu)缺點12.2 3種樸素貝葉斯實戰(zhàn)
第13章 從推薦系統(tǒng)看算法場景
13.1 推薦系統(tǒng)簡介13.1.1 推薦系統(tǒng)的發(fā)展13.1.2 協(xié)同過濾13.2 基于文本的推薦13.2.1 標簽與知識圖譜推薦案例13.2.2 小結(jié)
第14章 從TensorFlow開啟深度學習之旅
14.1 初識TensorFlow14.1.1 什么是TensorFlow14.1.2 安裝TensorFlow14.1.3 TensorFlow基本概念與原理14.2 TensorFlow數(shù)據(jù)結(jié)構(gòu)14.2.1 階14.2.2 形狀14.2.3 數(shù)據(jù)類型14.3 生成數(shù)據(jù)十二法14.3.1 生成Tensor14.3.2 生成序列14.3.3 生成隨機數(shù)14.4 TensorFlow實戰(zhàn)
希望對你有幫助!!!
貴在堅持,自己掌握一些,在工作中不斷打磨,高薪不是夢!!
一、遺傳算法介紹
遺傳算法是通過模擬大自然中生物進化的歷程,來解決問題的。大自然中一個種群經(jīng)歷過若干代的自然選擇后,剩下的種群必定是適應(yīng)環(huán)境的。把一個問題所有的解看做一個種群,經(jīng)歷過若干次的自然選擇以后,剩下的解中是有問題的最優(yōu)解的。當然,只能說有最優(yōu)解的概率很大。這里,我們用遺傳算法求一個函數(shù)的最大值。
f(x) = 10 * sin( 5x ) + 7 * cos( 4x ), 0 = x = 10
1、將自變量x進行編碼
取基因片段的長度為10, 則10位二進制位可以表示的范圍是0到1023。基因與自變量轉(zhuǎn)變的公式是x = b2d(individual) * 10 / 1023。構(gòu)造初始的種群pop。每個個體的基因初始值是[0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
2、計算目標函數(shù)值
根據(jù)自變量與基因的轉(zhuǎn)化關(guān)系式,求出每個個體的基因?qū)?yīng)的自變量,然后將自變量代入函數(shù)f(x),求出每個個體的目標函數(shù)值。
3、適應(yīng)度函數(shù)
適應(yīng)度函數(shù)是用來評估個體適應(yīng)環(huán)境的能力,是進行自然選擇的依據(jù)。本題的適應(yīng)度函數(shù)直接將目標函數(shù)值中的負值變成0. 因為我們求的是最大值,所以要使目標函數(shù)值是負數(shù)的個體不適應(yīng)環(huán)境,使其繁殖后代的能力為0.適應(yīng)度函數(shù)的作用將在自然選擇中體現(xiàn)。
4、自然選擇
自然選擇的思想不再贅述,操作使用輪盤賭算法。其具體步驟:
假設(shè)種群中共5個個體,適應(yīng)度函數(shù)計算出來的個體適應(yīng)性列表是fitvalue = [1 ,3, 0, 2, 4] ,totalvalue = 10 , 如果將fitvalue畫到圓盤上,值的大小表示在圓盤上的面積。在轉(zhuǎn)動輪盤的過程中,單個模塊的面積越大則被選中的概率越大。選擇的方法是將fitvalue轉(zhuǎn)化為[1 , 4 ,4 , 6 ,10], fitvalue / totalvalue = [0.1 , 0.4 , 0.4 , 0.6 , 1.0] . 然后產(chǎn)生5個0-1之間的隨機數(shù),將隨機數(shù)從小到大排序,假如是[0.05 , 0.2 , 0.7 , 0.8 ,0.9],則將0號個體、1號個體、4號個體、4號個體、4號個體拷貝到新種群中。自然選擇的結(jié)果使種群更符合條件了。
5、繁殖
假設(shè)個體a、b的基因是
a = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0]
b = [0, 0, 0, 1, 1, 0, 1, 1, 1, 1]
這兩個個體發(fā)生基因交換的概率pc = 0.6.如果要發(fā)生基因交換,則產(chǎn)生一個隨機數(shù)point表示基因交換的位置,假設(shè)point = 4,則:
a = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0]
b = [0, 0, 0, 1, 1, 0, 1, 1, 1, 1]
交換后為:
a = [1, 0, 0, 0, 1, 0, 1, 1, 1, 1]
b = [0, 0, 0, 1, 0, 1, 1, 1, 0, 0]
6、突變
遍歷每一個個體,基因的每一位發(fā)生突變(0變?yōu)?,1變?yōu)?)的概率為0.001.突變可以增加解空間
二、代碼
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
def b2d(b): #將二進制轉(zhuǎn)化為十進制 x∈[0,10] t = 0 for j in range(len(b)): t += b[j] * (math.pow(2, j)) t = t * 10 / 1023 return tpopsize = 50 #種群的大小#用遺傳算法求函數(shù)最大值:#f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]chromlength = 10 #基因片段的長度pc = 0.6 #兩個個體交叉的概率pm = 0.001; #基因突變的概率results = [[]]bestindividual = []bestfit = 0fitvalue = []tempop = [[]]pop = [[0, 1, 0, 1, 0, 1, 0, 1, 0, 1] for i in range(popsize)]for i in range(100): #繁殖100代 objvalue = calobjvalue(pop) #計算目標函數(shù)值 fitvalue = calfitvalue(objvalue); #計算個體的適應(yīng)值 [bestindividual, bestfit] = best(pop, fitvalue) #選出最好的個體和最好的函數(shù)值 results.append([bestfit,b2d(bestindividual)]) #每次繁殖,將最好的結(jié)果記錄下來 selection(pop, fitvalue) #自然選擇,淘汰掉一部分適應(yīng)性低的個體 crossover(pop, pc) #交叉繁殖 mutation(pop, pc) #基因突變 results.sort() print(results[-1]) #打印函數(shù)最大值和對應(yīng)的
來自CODE的代碼片
GA.py
1
2
3
4
5
6
7
8
9
def best(pop, fitvalue): #找出適應(yīng)函數(shù)值中最大值,和對應(yīng)的個體 px = len(pop) bestindividual = [] bestfit = fitvalue[0] for i in range(1,px): if(fitvalue[i] bestfit): bestfit = fitvalue[i] bestindividual = pop[i] return [bestindividual, bestfit]
來自CODE的代碼片
best.py
1
2
3
4
5
6
7
8
9
10
11
def calfitvalue(objvalue):#轉(zhuǎn)化為適應(yīng)值,目標函數(shù)值越大越好,負值淘汰。 fitvalue = [] temp = 0.0 Cmin = 0; for i in range(len(objvalue)): if(objvalue[i] + Cmin 0): temp = Cmin + objvalue[i] else: temp = 0.0 fitvalue.append(temp) return fitvalue
來自CODE的代碼片
calfitvalue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import mathdef decodechrom(pop): #將種群的二進制基因轉(zhuǎn)化為十進制(0,1023) temp = []; for i in range(len(pop)): t = 0; for j in range(10): t += pop[i][j] * (math.pow(2, j)) temp.append(t) return tempdef calobjvalue(pop): #計算目標函數(shù)值 temp1 = []; objvalue = []; temp1 = decodechrom(pop) for i in range(len(temp1)): x = temp1[i] * 10 / 1023 #(0,1023)轉(zhuǎn)化為 (0,10) objvalue.append(10 * math.sin(5 * x) + 7 * math.cos(4 * x)) return objvalue #目標函數(shù)值objvalue[m] 與個體基因 pop[m] 對應(yīng)
來自CODE的代碼片
calobjvalue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import randomdef crossover(pop, pc): #個體間交叉,實現(xiàn)基因交換 poplen = len(pop) for i in range(poplen - 1): if(random.random() pc): cpoint = random.randint(0,len(pop[0])) temp1 = [] temp2 = [] temp1.extend(pop[i][0 : cpoint]) temp1.extend(pop[i+1][cpoint : len(pop[i])]) temp2.extend(pop[i+1][0 : cpoint]) temp2.extend(pop[i][cpoint : len(pop[i])]) pop[i] = temp1 pop[i+1] = temp2
來自CODE的代碼片
crossover.py
1
2
3
4
5
6
7
8
9
10
11
12
13
import randomdef mutation(pop, pm): #基因突變 px = len(pop) py = len(pop[0]) for i in range(px): if(random.random() pm): mpoint = random.randint(0,py-1) if(pop[i][mpoint] == 1): pop[i][mpoint] = 0 else: pop[i][mpoint] = 1
來自CODE的代碼片
mutation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import randomdef sum(fitvalue): total = 0 for i in range(len(fitvalue)): total += fitvalue[i] return totaldef cumsum(fitvalue): for i in range(len(fitvalue)): t = 0; j = 0; while(j = i): t += fitvalue[j] j = j + 1 fitvalue[i] = t;def selection(pop, fitvalue): #自然選擇(輪盤賭算法) newfitvalue = [] totalfit = sum(fitvalue) for i in range(len(fitvalue)): newfitvalue.append(fitvalue[i] / totalfit) cumsum(newfitvalue) ms = []; poplen = len(pop) for i in range(poplen): ms.append(random.random()) #random float list ms ms.sort() fitin = 0 newin = 0 newpop = pop while newin poplen: if(ms[newin] newfitvalue[fitin]): newpop[newin] = pop[fitin] newin = newin + 1 else: fitin = fitin + 1 pop = newpop
多目標優(yōu)化
目標優(yōu)化問題一般地就是指通過一定的優(yōu)化算法獲得目標函數(shù)的最優(yōu)化解。當優(yōu)化的目標函數(shù)為一個時稱之為單目標優(yōu)化(Single-
objective Optimization Problem,
SOP)。當優(yōu)化的目標函數(shù)有兩個或兩個以上時稱為多目標優(yōu)化(Multi-objective Optimization Problem,
MOP)。不同于單目標優(yōu)化的解為有限解,多目標優(yōu)化的解通常是一組均衡解。
多目標優(yōu)化算法歸結(jié)起來有傳統(tǒng)優(yōu)化算法和智能優(yōu)化算法兩大類。
1. 傳統(tǒng)優(yōu)化算法包括加權(quán)法、約束法和線性規(guī)劃法等,實質(zhì)上就是將多目標函數(shù)轉(zhuǎn)化為單目標函數(shù),通過采用單目標優(yōu)化的方法達到對多目標函數(shù)的求解。
2. 智能優(yōu)化算法包括進化算法(Evolutionary Algorithm, 簡稱EA)、粒子群算法(Particle Swarm Optimization, PSO)等。
Pareto最優(yōu)解:
若x*∈C*,且在C中不存在比x更優(yōu)越的解x,則稱x*是多目標最優(yōu)化模型式的Pareto最優(yōu)解,又稱為有效解。
一般來說,多目標優(yōu)化問題并不存在一個最優(yōu)解,所有可能的解都稱為非劣解,也稱為Pareto解。傳統(tǒng)優(yōu)化技術(shù)一般每次能得到Pareo解集中的一個,而
用智能算法來求解,可以得到更多的Pareto解,這些解構(gòu)成了一個最優(yōu)解集,稱為Pareto最優(yōu)解。它是由那些任一個目標函數(shù)值的提高都必須以犧牲其
他目標函數(shù)值為代價的解組成的集合,稱為Pareto最優(yōu)域,簡稱Pareto集。
Pareto有效(最優(yōu))解非劣解集是指由這樣一些解組成的集合:與集合之外的任何解相比它們至少有一個目標函數(shù)比集合之外的解好。
求解多目標優(yōu)化問題最有名的就是NSGA-II了,是多目標遺傳算法,但其對解的選擇過程可以用在其他優(yōu)化算法上,例如粒子群,蜂群等等。這里簡單介紹一下NSGA-II的選擇算法。主要包含三個部分:
1. 快速非支配排序
要先講一下支配的概念,對于解X1和X2,如果X1對應(yīng)的所有目標函數(shù)都不比X2大(最小問題),且存在一個目標值比X2小,則X2被X1支配。
快速非支配排序是一個循環(huán)分級過程:首先找出群體中的非支配解集,記為第一非支配層,irank=1(irank是個體i的非支配值),將其從群體中除去,繼續(xù)尋找群體中的非支配解集,然后irank=2。
2. 個體擁擠距離
為了使計算結(jié)果在目標空間比較均勻的分布,維持種群多樣性,對每個個體計算擁擠距離,選擇擁擠距離大的個體,擁擠距離的定義為:
L[i]d=L[i]d+(L[i+1]m?L[i?1]m)/(fmaxm?fminm)
L[i+1]m是第i+1個個體的第m目標函數(shù)值,fmaxm 和 fminm是集合中第m個目標函數(shù)的最大和最小值。
3. 精英策略選擇
精英策略就是保留父代中的優(yōu)良個體直接進入子代,防止獲得的Pareto最優(yōu)解丟失。將第t次產(chǎn)生的子代種群和父代種群合并,然后對合并后的新種群進行非支配排序,然后按照非支配順序添加到規(guī)模為N的種群中作為新的父代。
當前題目:python求解目標函數(shù) 目標方程與目標函數(shù)
標題路徑:http://chinadenli.net/article38/hghhpp.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站收錄、網(wǎng)站建設(shè)、全網(wǎng)營銷推廣、Google、外貿(mào)建站、外貿(mào)網(wǎng)站建設(shè)
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)