欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

Python提取曲線函數(shù),python提取曲線數(shù)據(jù)線

Python 怎么用曲線擬合數(shù)據(jù)

Python中利用guiqwt進(jìn)行曲線數(shù)據(jù)擬合。

創(chuàng)新互聯(lián)致力于互聯(lián)網(wǎng)品牌建設(shè)與網(wǎng)絡(luò)營銷,包括成都網(wǎng)站制作、成都網(wǎng)站建設(shè)、SEO優(yōu)化、網(wǎng)絡(luò)推廣、整站優(yōu)化營銷策劃推廣、電子商務(wù)、移動(dòng)互聯(lián)網(wǎng)營銷等。創(chuàng)新互聯(lián)為不同類型的客戶提供良好的互聯(lián)網(wǎng)應(yīng)用定制及解決方案,創(chuàng)新互聯(lián)核心團(tuán)隊(duì)十多年專注互聯(lián)網(wǎng)開發(fā),積累了豐富的網(wǎng)站經(jīng)驗(yàn),為廣大企業(yè)客戶提供一站式企業(yè)網(wǎng)站建設(shè)服務(wù),在網(wǎng)站建設(shè)行業(yè)內(nèi)樹立了良好口碑。

示例程序:

圖形界面如下:

python之KS曲線

# 自定義繪制ks曲線的函數(shù)

def plot_ks(y_test, y_score, positive_flag):

# 對(duì)y_test,y_score重新設(shè)置索引

y_test.index = np.arange(len(y_test))

#y_score.index = np.arange(len(y_score))

# 構(gòu)建目標(biāo)數(shù)據(jù)集

target_data = pd.DataFrame({'y_test':y_test, 'y_score':y_score})

# 按y_score降序排列

target_data.sort_values(by = 'y_score', ascending = False, inplace = True)

# 自定義分位點(diǎn)

cuts = np.arange(0.1,1,0.1)

# 計(jì)算各分位點(diǎn)對(duì)應(yīng)的Score值

index = len(target_data.y_score)*cuts

scores = target_data.y_score.iloc[index.astype('int')]

# 根據(jù)不同的Score值,計(jì)算Sensitivity和Specificity

Sensitivity = []

Specificity = []

for score in scores:

? ? # 正例覆蓋樣本數(shù)量與實(shí)際正例樣本量

? ? positive_recall = target_data.loc[(target_data.y_test == positive_flag) (target_data.y_scorescore),:].shape[0]

? ? positive = sum(target_data.y_test == positive_flag)

? ? # 負(fù)例覆蓋樣本數(shù)量與實(shí)際負(fù)例樣本量

? ? negative_recall = target_data.loc[(target_data.y_test != positive_flag) (target_data.y_score=score),:].shape[0]

? ? negative = sum(target_data.y_test != positive_flag)

? ? Sensitivity.append(positive_recall/positive)

? ? Specificity.append(negative_recall/negative)

# 構(gòu)建繪圖數(shù)據(jù)

plot_data = pd.DataFrame({'cuts':cuts,'y1':1-np.array(Specificity),'y2':np.array(Sensitivity),

? ? ? ? ? ? ? ? ? ? ? ? ? 'ks':np.array(Sensitivity)-(1-np.array(Specificity))})

# 尋找Sensitivity和1-Specificity之差的最大值索引

max_ks_index = np.argmax(plot_data.ks)

plt.plot([0]+cuts.tolist()+[1], [0]+plot_data.y1.tolist()+[1], label = '1-Specificity')

plt.plot([0]+cuts.tolist()+[1], [0]+plot_data.y2.tolist()+[1], label = 'Sensitivity')

# 添加參考線

plt.vlines(plot_data.cuts[max_ks_index], ymin = plot_data.y1[max_ks_index],

? ? ? ? ? ymax = plot_data.y2[max_ks_index], linestyles = '--')

# 添加文本信息

plt.text(x = plot_data.cuts[max_ks_index]+0.01,

? ? ? ? y = plot_data.y1[max_ks_index]+plot_data.ks[max_ks_index]/2,

? ? ? ? s = 'KS= %.2f' %plot_data.ks[max_ks_index])

# 顯示圖例

plt.legend()

# 顯示圖形

plt.show()

# 調(diào)用自定義函數(shù),繪制K-S曲線

plot_ks(y_test = y_test, y_score = y_score, positive_flag = 1)

Python如何畫函數(shù)的曲線

輸入以下代碼導(dǎo)入我們用到的函數(shù)庫。

import numpy as np

import matplotlib.pyplot as plt

x=np.arange(0,5,0.1);

y=np.sin(x);

plt.plot(x,y)

采用剛才代碼后有可能無法顯示下圖,然后在輸入以下代碼就可以了:

plt.show()

名稱欄目:Python提取曲線函數(shù),python提取曲線數(shù)據(jù)線
URL分享:http://chinadenli.net/article34/hshpse.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站維護(hù)網(wǎng)站制作定制網(wǎng)站建站公司動(dòng)態(tài)網(wǎng)站Google

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

網(wǎng)站建設(shè)網(wǎng)站維護(hù)公司