欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

Pytorch中怎么利用ResNet50實現(xiàn)圖像分類

這期內(nèi)容當(dāng)中小編將會給大家?guī)碛嘘P(guān)Pytorch中怎么利用ResNet50實現(xiàn)圖像分類,文章內(nèi)容豐富且以專業(yè)的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。

成都創(chuàng)新互聯(lián)公司專注于寧化企業(yè)網(wǎng)站建設(shè),成都響應(yīng)式網(wǎng)站建設(shè)公司,商城網(wǎng)站制作。寧化網(wǎng)站建設(shè)公司,為寧化等地區(qū)提供建站服務(wù)。全流程定制網(wǎng)站,專業(yè)設(shè)計,全程項目跟蹤,成都創(chuàng)新互聯(lián)公司專業(yè)和態(tài)度為您提供的服務(wù)


模型

Torchvision.models包里面包含了常見的各種基礎(chǔ)模型架構(gòu),主要包括:

AlexNet
VGG
ResNet
SqueezeNet
DenseNet
Inception v3
GoogLeNet
ShuffleNet v2
MobileNet v2
ResNeXt
Wide ResNet
MNASNet

這里我選擇了ResNet50,基于ImageNet訓(xùn)練的基礎(chǔ)網(wǎng)絡(luò)來實現(xiàn)圖像分類, 網(wǎng)絡(luò)模型下載與加載如下:

  • model = torchvision.models.resnet50(pretrained=True).eval().cuda()

  • tf = transforms.Compose([

  •             transforms.Resize(256),

  •             transforms.CenterCrop(224),

  •             transforms.ToTensor(),

  •             transforms.Normalize(

  •             mean=[0.485, 0.456, 0.406],

  •             std=[0.229, 0.224, 0.225]

  •         )])

使用模型實現(xiàn)圖像分類

這里首先需要加載ImageNet的分類標簽,目的是最后顯示分類的文本標簽時候使用。然后對輸入圖像完成預(yù)處理,使用ResNet50模型實現(xiàn)分類預(yù)測,對預(yù)測結(jié)果解析之后,顯示標簽文本,完整的代碼演示如下:

 1with open('imagenet_classes.txt') as f:
2    labels = [line.strip() for line in f.readlines()]
3
4src = cv.imread("D:/images/space_shuttle.jpg") # aeroplane.jpg
5image = cv.resize(src, (224, 224))
6image = np.float32(image) / 255.0
7image[:,:,] -= (np.float32(0.485), np.float32(0.456), np.float32(0.406))
8image[:,:,] /= (np.float32(0.229), np.float32(0.224), np.float32(0.225))
9image = image.transpose((2, 0, 1))
10input_x = torch.from_numpy(image).unsqueeze(0)
11print(input_x.size())
12pred = model(input_x.cuda())
13pred_index = torch.argmax(pred, 1).cpu().detach().numpy()
14print(pred_index)
15print("current predict class name : %s"%labels[pred_index[0]])
16cv.putText(src, labels[pred_index[0]], (50, 50), cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2)
17cv.imshow("input", src)
18cv.waitKey(0)
19cv.destroyAllWindows()

運行結(jié)果如下:

Pytorch中怎么利用ResNet50實現(xiàn)圖像分類

轉(zhuǎn)ONNX支持

在torchvision中的模型基本上都可以轉(zhuǎn)換為ONNX格式,而且被OpenCV DNN模塊所支持,所以,很方便的可以對torchvision自帶的模型轉(zhuǎn)為ONNX,實現(xiàn)OpenCV DNN的調(diào)用,首先轉(zhuǎn)為ONNX模型,直接使用torch.onnx.export即可轉(zhuǎn)換(還不知道怎么轉(zhuǎn),快點看前面的例子)。轉(zhuǎn)換之后使用OpenCV DNN調(diào)用的代碼如下:

 1with open('imagenet_classes.txt') as f:
2    labels = [line.strip() for line in f.readlines()]
3net = cv.dnn.readNetFromONNX("resnet.onnx")
4src = cv.imread("D:/images/messi.jpg")  # aeroplane.jpg
5image = cv.resize(src, (224, 224))
6image = np.float32(image) / 255.0
7image[:, :, ] -= (np.float32(0.485), np.float32(0.456), np.float32(0.406))
8image[:, :, ] /= (np.float32(0.229), np.float32(0.224), np.float32(0.225))
9blob = cv.dnn.blobFromImage(image, 1.0, (224, 224), (0, 0, 0), False)
10net.setInput(blob)
11probs = net.forward()
12index = np.argmax(probs)
13cv.putText(src, labels[index], (50, 50), cv.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2)
14cv.imshow("input", src)
15cv.waitKey(0)
16cv.destroyAllWindows()

上述就是小編為大家分享的Pytorch中怎么利用ResNet50實現(xiàn)圖像分類了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關(guān)知識,歡迎關(guān)注創(chuàng)新互聯(lián)行業(yè)資訊頻道。

分享題目:Pytorch中怎么利用ResNet50實現(xiàn)圖像分類
路徑分享:http://chinadenli.net/article32/pdsepc.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供微信公眾號App設(shè)計標簽優(yōu)化、搜索引擎優(yōu)化、商城網(wǎng)站、企業(yè)網(wǎng)站制作

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

搜索引擎優(yōu)化