欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

go語言棧,golang實現(xiàn)棧

go程序如何分配堆棧的

在Go語言中有一些調(diào)試技巧能幫助我們快速找到問題,有時候你想盡可能多的記錄異常但仍覺得不夠,搞清楚堆棧的意義有助于定位Bug或者記錄更完整的信息。

成都創(chuàng)新互聯(lián)專注于耀州企業(yè)網(wǎng)站建設,自適應網(wǎng)站建設,電子商務商城網(wǎng)站建設。耀州網(wǎng)站建設公司,為耀州等地區(qū)提供建站服務。全流程按需策劃,專業(yè)設計,全程項目跟蹤,成都創(chuàng)新互聯(lián)專業(yè)和態(tài)度為您提供的服務

本文將討論堆棧跟蹤信息以及如何在堆棧中識別函數(shù)所傳遞的參數(shù)。

Functions

先從這段代碼開始:

Listing 1

01 package main

02

03 func main() {

04 ? ? slice := make([]string, 2, 4)

05 ? ? Example(slice, "hello", 10)

06 }

07

08 func Example(slice []string, str string, i int) {

09 ? ? panic("Want stack trace")

10 }

Example函數(shù)定義了3個參數(shù),1個string類型的slice, 1個string和1個integer, 并且拋出了panic,運行這段代碼可以看到這樣的結果:

Listing 2

Panic: Want stack trace

goroutine 1 [running]:

main.Example(0x2080c3f50, 0x2, 0x4, 0x425c0, 0x5, 0xa)

/Users/bill/Spaces/Go/Projects/src/github.com/goinaction/code/

temp/main.go:9 +0x64

main.main()

/Users/bill/Spaces/Go/Projects/src/github.com/goinaction/code/

temp/main.go:5 +0x85

goroutine 2 [runnable]:

runtime.forcegchelper()

/Users/bill/go/src/runtime/proc.go:90

runtime.goexit()

/Users/bill/go/src/runtime/asm_amd64.s:2232 +0x1

goroutine 3 [runnable]:

runtime.bgsweep()

/Users/bill/go/src/runtime/mgc0.go:82

runtime.goexit()

/Users/bill/go/src/runtime/asm_amd64.s:2232 +0x1

堆棧信息中顯示了在panic拋出這個時間所有的goroutines狀態(tài),發(fā)生的panic的goroutine會顯示在最上面。

Listing 3

01 goroutine 1 [running]:

02 main.Example(0x2080c3f50, 0x2, 0x4, 0x425c0, 0x5, 0xa)

/Users/bill/Spaces/Go/Projects/src/github.com/goinaction/code/

temp/main.go:9 +0x64

03 main.main()

/Users/bill/Spaces/Go/Projects/src/github.com/goinaction/code/

temp/main.go:5 +0x85

第1行顯示最先發(fā)出panic的是goroutine 1, 第二行顯示panic位于main.Example中, 并能定位到該行代碼,在本例中第9行引發(fā)了panic。

下面我們關注參數(shù)是如何傳遞的:

Listing 4

// Declaration

main.Example(slice []string, str string, i int)

// Call to Example by main.

slice := make([]string, 2, 4)

Example(slice, "hello", 10)

// Stack trace

main.Example(0x2080c3f50, 0x2, 0x4, 0x425c0, 0x5, 0xa)

這里展示了在main中帶參數(shù)調(diào)用Example函數(shù)時的堆棧信息,比較就能發(fā)現(xiàn)兩者的參數(shù)數(shù)量并不相同,Example定義了3個參數(shù),堆棧中顯示了6個參數(shù)?,F(xiàn)在的關鍵問題是我們要弄清楚它們是如何匹配的。

第1個參數(shù)是string類型的slice,我們知道在Go語言中slice是引用類型,即slice變量結構會包含三個部分:指針、長度(Lengthe)、容量(Capacity)

Listing 5

// Slice parameter value

slice := make([]string, 2, 4)

// Slice header values

Pointer: ?0x2080c3f50

Length: ? 0x2

Capacity: 0x4

// Declaration

main.Example(slice []string, str string, i int)

// Stack trace

main.Example(0x2080c3f50, 0x2, 0x4, 0x425c0, 0x5, 0xa)

因此,前面3個參數(shù)會匹配slice, 如下圖所示:

Figure 1

figure provided by Georgi Knox

我們現(xiàn)在來看第二個參數(shù),它是string類型,string類型也是引用類型,它包括兩部分:指針、長度。

Listing 6

// String parameter value

"hello"

// String header values

Pointer: 0x425c0

Length: ?0x5

// Declaration

main.Example(slice []string,?str string, i int)

// Stack trace

main.Example(0x2080c3f50, 0x2, 0x4,?0x425c0, 0x5, 0xa)

可以確定,堆棧信息中第4、5兩個參數(shù)對應代碼中的string參數(shù),如下圖所示:

Figure 2

figure provided by Georgi Knox

最后一個參數(shù)integer是single word值。

Listing 7

// Integer parameter value

10

// Integer value

Base 16: 0xa

// Declaration

main.Example(slice []string, str string,?i int)

// Stack trace

main.Example(0x2080c3f50, 0x2, 0x4, 0x425c0, 0x5,?0xa)

現(xiàn)在我們可以匹配代碼中的參數(shù)到堆棧信息了。

Figure 3

figure provided by Georgi Knox

Methods

如果我們將Example作為結構體的方法會怎么樣呢?

Listing 8

01 package main

02

03 import "fmt"

04

05 type trace struct{}

06

07 func main() {

08 ? ? slice := make([]string, 2, 4)

09

10 ? ? var t trace

11 ? ? t.Example(slice, "hello", 10)

12 }

13

14 func (t *trace) Example(slice []string, str string, i int) {

15 ? ? fmt.Printf("Receiver Address: %p\n", t)

16 ? ? panic("Want stack trace")

17 }

如上所示修改代碼,將Example定義為trace的方法,并通過trace的實例t來調(diào)用Example。

再次運行程序,會發(fā)現(xiàn)堆棧信息有一點不同:

Listing 9

Receiver Address:?0x1553a8

panic: Want stack trace

01 goroutine 1 [running]:

02 main.(*trace).Example(0x1553a8, 0x2081b7f50, 0x2, 0x4, 0xdc1d0, 0x5, 0xa)

/Users/bill/Spaces/Go/Projects/src/github.com/goinaction/code/

temp/main.go:16 +0x116

03 main.main()

/Users/bill/Spaces/Go/Projects/src/github.com/goinaction/code/

temp/main.go:11 +0xae

首先注意第2行的方法調(diào)用使用了pointer receiver,在package名字和方法名之間多出了"*trace"字樣。另外,參數(shù)列表的第1個參數(shù)標明了結構體(t)地址。我們從堆棧信息中看到了內(nèi)部實現(xiàn)細節(jié)。

Packing

如果有多個參數(shù)可以填充到一個single word, 則這些參數(shù)值會合并打包:

Listing 10

01 package main

02

03 func main() {

04 ? ? Example(true, false, true, 25)

05 }

06?

07 func Example(b1, b2, b3 bool, i uint8) {

08 ? ? panic("Want stack trace")

09 }

這個例子修改Example函數(shù)為4個參數(shù):3個bool型和1個八位無符號整型。bool值也是用8個bit表示,所以在32位和64位架構下,4個參數(shù)可以合并為一個single word。

Listing 11

01 goroutine 1 [running]:

02 main.Example(0x19010001)

/Users/bill/Spaces/Go/Projects/src/github.com/goinaction/code/

temp/main.go:8 +0x64

03 main.main()

/Users/bill/Spaces/Go/Projects/src/github.com/goinaction/code/

temp/main.go:4 +0x32

這是本例的堆棧信息,看下圖的具體分析:

Listing 12

// Parameter values

true, false, true, 25

// Word value

Bits ? ?Binary ? ? ?Hex ? Value

00-07 ? 0000 0001 ??01? ??true

08-15 ? 0000 0000 ??00? ? false

16-23 ? 0000 0001 ??01? ? true

24-31 ? 0001 1001 ??19? ? 25

// Declaration

main.Example(b1, b2, b3 bool, i uint8)

// Stack trace

main.Example(0x19010001)

以上展示了參數(shù)值是如何匹配到4個參數(shù)的。當我們看到堆棧信息中包括十六進制值,需要知道這些值是如何傳遞的。

Go語言的跨平臺能力到底有多強?看完你就知道了

對比于其他語言的程序,Go語言的跨平臺能力是真的強,拿.Net和JAVA來說吧,.Net在.Net core出現(xiàn)之前是不能跨平臺的,只能在windows上編譯運行,即使是.net core出現(xiàn)以后,跨平臺的程序也是相當?shù)穆闊6鴍ava雖然一直都可以跨平臺,但是運行JAVA程序的機器上也必須要有JAVA程序運行環(huán)境JRE。而相對于Go程序,跨平臺就簡單的多了,只需要在編譯指定目標程序運行的架構和環(huán)境即可編譯出指定操作系統(tǒng)和架構的程序。

以上是指定了go的環(huán)境變量后執(zhí)行的go build命令進行目標程序的構建,這種方式會一直生效的,如果不讓他一直生效,可以在構建的時候臨時指定環(huán)境變量,下面以window的環(huán)境為例,來介紹臨時指定環(huán)境變量的方式構建可以在Linux環(huán)境下運行的可執(zhí)行程序:

可以根據(jù)不同的架構和操作系統(tǒng)將其編寫為不同的.bat的可執(zhí)行文件放置在程序的根目錄,Linux的和MAC的也一樣編寫成腳本文件放置在程序的根目錄,這樣在構建的時候就不用再敲命令了,直接運行腳本就可以了。

Java程序編譯打包后為war包或者是java包,必須執(zhí)行java -jar 命令或者將其放置到tomcat的指定目錄下,運行tomcat程序。而Go語言編寫的程序最終為可執(zhí)行的文件(window下編譯出的是.exe的可執(zhí)行文件),只需要將其賦予可執(zhí)行的權限就可以直接運行了。

構建JAVA程序的鏡像需要指定java的基礎鏡像,否則就需要在鏡像中安裝java的運行環(huán)境了,下面展示的是構建的一個JAVA程序的鏡像,構建出來鏡像的體積相對比較大

而Go程序制作出的鏡像就不需要安裝任何的依賴環(huán)境,因為他在打包的時候就已經(jīng)將依賴的包一塊打包到一起了

拿著這個鏡像就可以到處運行了。

通過對比我們可以發(fā)現(xiàn),如果沒有之前的技術和業(yè)務的積累,重新開發(fā)一個新的項目,使用go去開發(fā)無疑是最容易上手的,所以現(xiàn)在很多公司都使用go進行開發(fā),也逐漸將其他語言的項目逐步的用go語言進行改造。其實用什么語言不重要,合適的才重要,開發(fā)項目在選擇語言的時候也會綜合多方面來考慮選擇合適的語言和架構,畢竟很多公司都不是搞研究的,都需要項目來賺錢,所以開發(fā)的速度、客戶的滿意度、項目交付的時間才是驅(qū)動公司技術的主要因素。

我們個人也應該不斷完善自己的技術棧,不應該太依靠某種語言,最重要的還是自己的架構思想和底層架構知識,只有掌握了這些才能夠不被 社會 和公司“優(yōu)化”。

Go 語言內(nèi)存管理(三):逃逸分析

Go 語言較之 C 語言一個很大的優(yōu)勢就是自帶 GC 功能,可 GC 并不是沒有代價的。寫 C 語言的時候,在一個函數(shù)內(nèi)聲明的變量,在函數(shù)退出后會自動釋放掉,因為這些變量分配在棧上。如果你期望變量的數(shù)據(jù)可以在函數(shù)退出后仍然能被訪問,就需要調(diào)用 malloc 方法在堆上申請內(nèi)存,如果程序不再需要這塊內(nèi)存了,再調(diào)用 free 方法釋放掉。Go 語言不需要你主動調(diào)用 malloc 來分配堆空間,編譯器會自動分析,找出需要 malloc 的變量,使用堆內(nèi)存。編譯器的這個分析過程就叫做逃逸分析。

所以你在一個函數(shù)中通過 dict := make(map[string]int) 創(chuàng)建一個 map 變量,其背后的數(shù)據(jù)是放在??臻g上還是堆空間上,是不一定的。這要看編譯器分析的結果。

可逃逸分析并不是百分百準確的,它有缺陷。有的時候你會發(fā)現(xiàn)有些變量其實在??臻g上分配完全沒問題的,但編譯后程序還是把這些數(shù)據(jù)放在了堆上。如果你了解 Go 語言編譯器逃逸分析的機制,在寫代碼的時候就可以有意識地繞開這些缺陷,使你的程序更高效。

Go 語言雖然在內(nèi)存管理方面降低了編程門檻,即使你不了解堆棧也能正常開發(fā),但如果你要在性能上較真的話,還是要掌握這些基礎知識。

這里不對堆內(nèi)存和棧內(nèi)存的區(qū)別做太多闡述。簡單來說就是, 棧分配廉價,堆分配昂貴。 棧空間會隨著一個函數(shù)的結束自動釋放,堆空間需要時間 GC 模塊不斷地跟蹤掃描回收。如果對這兩個概念有些迷糊,建議閱讀下面 2 個文章:

這里舉一個小例子,來對比下堆棧的差別:

stack 函數(shù)中的變量 i 在函數(shù)退出會自動釋放;而 heap 函數(shù)返回的是對變量 i 的引用,也就是說 heap() 退出后,表示變量 i 還要能被訪問,它會自動被分配到堆空間上。

他們編譯出來的代碼如下:

邏輯的復雜度不言而喻,從上面的匯編中可看到, heap() 函數(shù)調(diào)用了 runtime.newobject() 方法,它會調(diào)用 mallocgc 方法從 mcache 上申請內(nèi)存,申請的內(nèi)部邏輯前面文章已經(jīng)講述過。堆內(nèi)存分配不僅分配上邏輯比??臻g分配復雜,它最致命的是會帶來很大的管理成本,Go 語言要消耗很多的計算資源對其進行標記回收(也就是 GC 成本)。

Go 編輯器會自動幫我們找出需要進行動態(tài)分配的變量,它是在編譯時追蹤一個變量的生命周期,如果能確認一個數(shù)據(jù)只在函數(shù)空間內(nèi)訪問,不會被外部使用,則使用棧空間,否則就要使用堆空間。

我們在 go build 編譯代碼時,可使用 -gcflags '-m' 參數(shù)來查看逃逸分析日志。

以上面的兩個函數(shù)為例,編譯的日志輸出是:

日志中的 i escapes to heap 表示該變量數(shù)據(jù)逃逸到了堆上。

需要使用堆空間,所以逃逸,這沒什么可爭議的。但編譯器有時會將 不需要 使用堆空間的變量,也逃逸掉。這里是容易出現(xiàn)性能問題的大坑。網(wǎng)上有很多相關文章,列舉了一些導致逃逸情況,其實總結起來就一句話:

多級間接賦值容易導致逃逸 。

這里的多級間接指的是,對某個引用類對象中的引用類成員進行賦值。Go 語言中的引用類數(shù)據(jù)類型有 func , interface , slice , map , chan , *Type(指針) 。

記住公式 Data.Field = Value ,如果 Data , Field 都是引用類的數(shù)據(jù)類型,則會導致 Value 逃逸。這里的等號 = 不單單只賦值,也表示參數(shù)傳遞。

根據(jù)公式,我們假設一個變量 data 是以下幾種類型,相應的可以得出結論:

下面給出一些實際的例子:

如果變量值是一個函數(shù),函數(shù)的參數(shù)又是引用類型,則傳遞給它的參數(shù)都會逃逸。

上例中 te 的類型是 func(*int) ,屬于引用類型,參數(shù) *int 也是引用類型,則調(diào)用 te(j) 形成了為 te 的參數(shù)(成員) *int 賦值的現(xiàn)象,即 te.i = j 會導致逃逸。代碼中其他幾種調(diào)用都沒有形成 多級間接賦值 情況。

同理,如果函數(shù)的參數(shù)類型是 slice , map 或 interface{} 都會導致參數(shù)逃逸。

匿名函數(shù)的調(diào)用也是一樣的,它本質(zhì)上也是一個函數(shù)變量。有興趣的可以自己測試一下。

只要使用了 Interface 類型(不是 interafce{} ),那么賦值給它的變量一定會逃逸。因為 interfaceVariable.Method() 先是間接的定位到它的實際值,再調(diào)用實際值的同名方法,執(zhí)行時實際值作為參數(shù)傳遞給方法。相當于 interfaceVariable.Method.this = realValue

向 channel 中發(fā)送數(shù)據(jù),本質(zhì)上就是為 channel 內(nèi)部的成員賦值,就像給一個 slice 中的某一項賦值一樣。所以 chan *Type , chan map[Type]Type , chan []Type , chan interface{} 類型都會導致發(fā)送到 channel 中的數(shù)據(jù)逃逸。

這本來也是情理之中的,發(fā)送給 channel 的數(shù)據(jù)是要與其他函數(shù)分享的,為了保證發(fā)送過去的指針依然可用,只能使用堆分配。

可變參數(shù)如 func(arg ...string) 實際與 func(arg []string) 是一樣的,會增加一層訪問路徑。這也是 fmt.Sprintf 總是會使參數(shù)逃逸的原因。

例子非常多,這里不能一一列舉,我們只需要記住分析方法就好,即,2 級或更多級的訪問賦值會 容易 導致數(shù)據(jù)逃逸。這里加上 容易 二字是因為隨著語言的發(fā)展,相信這些問題會被慢慢解決,但現(xiàn)階段,這個可以作為我們分析逃逸現(xiàn)象的依據(jù)。

下面代碼中包含 2 種很常規(guī)的寫法,但他們卻有著很大的性能差距,建議自己想下為什么。

Benchmark 和 pprof 給出的結果:

熟悉堆棧概念可以讓我們更容易看透 Go 程序的性能問題,并進行優(yōu)化。

多級間接賦值會導致 Go 編譯器出現(xiàn)不必要的逃逸,在一些情況下可能我們只需要修改一下數(shù)據(jù)結構就會使性能有大幅提升。這也是很多人不推薦在 Go 中使用指針的原因,因為它會增加一級訪問路徑,而 map , slice , interface{} 等類型是不可避免要用到的,為了減少不必要的逃逸,只能拿指針開刀了。

大多數(shù)情況下,性能優(yōu)化都會為程序帶來一定的復雜度。建議實際項目中還是怎么方便怎么寫,功能完成后通過性能分析找到瓶頸所在,再對局部進行優(yōu)化。

網(wǎng)站標題:go語言棧,golang實現(xiàn)棧
轉(zhuǎn)載源于:http://chinadenli.net/article32/heepsc.html

成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供服務器托管、建站公司、網(wǎng)站收錄、企業(yè)建站手機網(wǎng)站建設、微信公眾號

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

成都定制網(wǎng)站建設