可以。

成都創(chuàng)新互聯主要從事網站制作、成都網站建設、網頁設計、企業(yè)做網站、公司建網站等業(yè)務。立足成都服務冠縣,十載網站建設經驗,價格優(yōu)惠、服務專業(yè),歡迎來電咨詢建站服務:18982081108
使用Python自帶的sum函數,sum函數是個內置函數,可以求一個數字列表的和,并且可以帶初始值,如果不帶初始值的話,默認是0。
首個參數為可迭代的列表,初始值默認為0,也可以為其他值,比如說[],空列表在Python里面,類型是動態(tài)類型,一種操作或接口,到底做何操作取決于對象本身比如說同樣是+,如果兩者都是數字1+1=2,如果兩者都是字符串,則'1'+'1'='11'所以如果這里的start本身為[],則會執(zhí)行列表合并的操作。
最優(yōu)化
為什么要做最優(yōu)化呢?因為在生活中,人們總是希望幸福值或其它達到一個極值,比如做生意時希望成本最小,收入最大,所以在很多商業(yè)情境中,都會遇到求極值的情況。
函數求根
這里「函數的根」也稱「方程的根」,或「函數的零點」。
先把我們需要的包加載進來。import numpy as npimport scipy as spimport scipy.optimize as optimport matplotlib.pyplot as plt%matplotlib inline
函數求根和最優(yōu)化的關系?什么時候函數是最小值或最大值?
兩個問題一起回答:最優(yōu)化就是求函數的最小值或最大值,同時也是極值,在求一個函數最小值或最大值時,它所在的位置肯定是導數為 0 的位置,所以要求一個函數的極值,必然要先求導,使其為 0,所以函數求根就是為了得到最大值最小值。
scipy.optimize 有什么方法可以求根?
可以用 scipy.optimize 中的 bisect 或 brentq 求根。f = lambda x: np.cos(x) - x # 定義一個匿名函數x = np.linspace(-5, 5, 1000) # 先生成 1000 個 xy = f(x) # 對應生成 1000 個 f(x)plt.plot(x, y); # 看一下這個函數長什么樣子plt.axhline(0, color='k'); # 畫一根橫線,位置在 y=0
opt.bisect(f, -5, 5) # 求取函數的根0.7390851332155535plt.plot(x, y)plt.axhline(0, color='k')plt.scatter([_], [0], c='r', s=100); # 這里的 [_] 表示上一個 Cell 中的結果,這里是 x 軸上的位置,0 是 y 上的位置
求根有兩種方法,除了上面介紹的 bisect,還有 brentq,后者比前者快很多。%timeit opt.bisect(f, -5, 5)%timeit opt.brentq(f, -5, 5)10000 loops, best of 3: 157 s per loopThe slowest run took 11.65 times longer than the fastest. This could mean that an intermediate result is being cached.10000 loops, best of 3: 35.9 s per loop
函數求最小化
求最小值就是一個最優(yōu)化問題。求最大值時只需對函數做一個轉換,比如加一個負號,或者取倒數,就可轉成求最小值問題。所以兩者是同一問題。
初始值對最優(yōu)化的影響是什么?
舉例來說,先定義個函數。f = lambda x: 1-np.sin(x)/xx = np.linspace(-20., 20., 1000)y = f(x)
當初始值為 3 值,使用 minimize 函數找到最小值。minimize 函數是在新版的 scipy 里,取代了以前的很多最優(yōu)化函數,是個通用的接口,背后是很多方法在支撐。x0 = 3xmin = opt.minimize(f, x0).x # x0 是起始點,起始點最好離真正的最小值點不要太遠plt.plot(x, y)plt.scatter(x0, f(x0), marker='o', s=300); # 起始點畫出來,用圓圈表示plt.scatter(xmin, f(xmin), marker='v', s=300); # 最小值點畫出來,用三角表示plt.xlim(-20, 20);
初始值為 3 時,成功找到最小值。
現在來看看初始值為 10 時,找到的最小值點。x0 = 10xmin = opt.minimize(f, x0).xplt.plot(x, y)plt.scatter(x0, f(x0), marker='o', s=300)plt.scatter(xmin, f(xmin), marker='v', s=300)plt.xlim(-20, 20);
由上圖可見,當初始值為 10 時,函數找到的是局部最小值點,可見 minimize 的默認算法對起始點的依賴性。
那么怎么才能不管初始值在哪個位置,都能找到全局最小值點呢?
如何找到全局最優(yōu)點?
可以使用 basinhopping 函數找到全局最優(yōu)點,相關背后算法,可以看幫助文件,有提供論文的索引和出處。
我們設初始值為 10 看是否能找到全局最小值點。x0 = 10from scipy.optimize import basinhoppingxmin = basinhopping(f,x0,stepsize = 5).xplt.plot(x, y);plt.scatter(x0, f(x0), marker='o', s=300);plt.scatter(xmin, f(xmin), marker='v', s=300);plt.xlim(-20, 20);
當起始點在比較遠的位置,依然成功找到了全局最小值點。
如何求多元函數最小值?
以二元函數為例,使用 minimize 求對應的最小值。def g(X): x,y = X return (x-1)**4 + 5 * (y-1)**2 - 2*x*yX_opt = opt.minimize(g, (8, 3)).x # (8,3) 是起始點print X_opt[ 1.88292611 1.37658521]fig, ax = plt.subplots(figsize=(6, 4)) # 定義畫布和圖形x_ = y_ = np.linspace(-1, 4, 100)X, Y = np.meshgrid(x_, y_)c = ax.contour(X, Y, g((X, Y)), 50) # 等高線圖ax.plot(X_opt[0], X_opt[1], 'r*', markersize=15) # 最小點的位置是個元組ax.set_xlabel(r"$x_1$", fontsize=18)ax.set_ylabel(r"$x_2$", fontsize=18)plt.colorbar(c, ax=ax) # colorbar 表示顏色越深,高度越高fig.tight_layout()
畫3D 圖。from mpl_toolkits.mplot3d import Axes3Dfrom matplotlib import cmfig = plt.figure()ax = fig.gca(projection='3d')x_ = y_ = np.linspace(-1, 4, 100)X, Y = np.meshgrid(x_, y_)surf = ax.plot_surface(X, Y, g((X,Y)), rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=0, antialiased=False)cset = ax.contour(X, Y, g((X,Y)), zdir='z',offset=-5, cmap=cm.coolwarm)fig.colorbar(surf, shrink=0.5, aspect=5);
曲線擬合
曲線擬合和最優(yōu)化有什么關系?
曲線擬合的問題是,給定一組數據,它可能是沿著一條線散布的,這時要找到一條最優(yōu)的曲線來擬合這些數據,也就是要找到最好的線來代表這些點,這里的最優(yōu)是指這些點和線之間的距離是最小的,這就是為什么要用最優(yōu)化問題來解決曲線擬合問題。
舉例說明,給一些點,找到一條線,來擬合這些點。
先給定一些點:N = 50 # 點的個數m_true = 2 # 斜率b_true = -1 # 截距dy = 2.0 # 誤差np.random.seed(0)xdata = 10 * np.random.random(N) # 50 個 x,服從均勻分布ydata = np.random.normal(b_true + m_true * xdata, dy) # dy 是標準差plt.errorbar(xdata, ydata, dy, fmt='.k', ecolor='lightgray');
上面的點整體上呈現一個線性關系,要找到一條斜線來代表這些點,這就是經典的一元線性回歸。目標就是找到最好的線,使點和線的距離最短。要優(yōu)化的函數是點和線之間的距離,使其最小。點是確定的,而線是可變的,線是由參數值,斜率和截距決定的,這里就是要通過優(yōu)化距離找到最優(yōu)的斜率和截距。
點和線的距離定義如下:def chi2(theta, x, y): return np.sum(((y - theta[0] - theta[1] * x)) ** 2)
上式就是誤差平方和。
誤差平方和是什么?有什么作用?
誤差平方和公式為:
誤差平方和大,表示真實的點和預測的線之間距離太遠,說明擬合得不好,最好的線,應該是使誤差平方和最小,即最優(yōu)的擬合線,這里是條直線。
誤差平方和就是要最小化的目標函數。
找到最優(yōu)的函數,即斜率和截距。theta_guess = [0, 1] # 初始值theta_best = opt.minimize(chi2, theta_guess, args=(xdata, ydata)).xprint(theta_best)[-1.01442005 1.93854656]
上面兩個輸出即是預測的直線斜率和截距,我們是根據點來反推直線的斜率和截距,那么真實的斜率和截距是多少呢?-1 和 2,很接近了,差的一點是因為有噪音的引入。xfit = np.linspace(0, 10)yfit = theta_best[0] + theta_best[1] * xfitplt.errorbar(xdata, ydata, dy, fmt='.k', ecolor='lightgray');plt.plot(xfit, yfit, '-k');
最小二乘(Least Square)是什么?
上面用的是 minimize 方法,這個問題的目標函數是誤差平方和,這就又有一個特定的解法,即最小二乘。
最小二乘的思想就是要使得觀測點和估計點的距離的平方和達到最小,這里的“二乘”指的是用平方來度量觀測點與估計點的遠近(在古漢語中“平方”稱為“二乘”),“最小”指的是參數的估計值要保證各個觀測點與估計點的距離的平方和達到最小。
關于最小二乘估計的計算,涉及更多的數學知識,這里不想詳述,其一般的過程是用目標函數對各參數求偏導數,并令其等于 0,得到一個線性方程組。具體推導過程可參考斯坦福機器學習講義 第 7 頁。def deviations(theta, x, y): return (y - theta[0] - theta[1] * x)theta_best, ier = opt.leastsq(deviations, theta_guess, args=(xdata, ydata))print(theta_best)[-1.01442016 1.93854659]
最小二乘 leastsq 的結果跟 minimize 結果一樣。注意 leastsq 的第一個參數不再是誤差平方和 chi2,而是誤差本身 deviations,即沒有平方,也沒有和。yfit = theta_best[0] + theta_best[1] * xfitplt.errorbar(xdata, ydata, dy, fmt='.k', ecolor='lightgray');plt.plot(xfit, yfit, '-k');
非線性最小二乘
上面是給一些點,擬合一條直線,擬合一條曲線也是一樣的。def f(x, beta0, beta1, beta2): # 首先定義一個非線性函數,有 3 個參數 return beta0 + beta1 * np.exp(-beta2 * x**2)beta = (0.25, 0.75, 0.5) # 先猜 3 個 betaxdata = np.linspace(0, 5, 50)y = f(xdata, *beta)ydata = y + 0.05 * np.random.randn(len(xdata)) # 給 y 加噪音def g(beta): return ydata - f(xdata, *beta) # 真實 y 和 預測值的差,求最優(yōu)曲線時要用到beta_start = (1, 1, 1)beta_opt, beta_cov = opt.leastsq(g, beta_start)print beta_opt # 求到的 3 個最優(yōu)的 beta 值[ 0.25525709 0.74270226 0.54966466]
拿估計的 beta_opt 值跟真實的 beta = (0.25, 0.75, 0.5) 值比較,差不多。fig, ax = plt.subplots()ax.scatter(xdata, ydata) # 畫點ax.plot(xdata, y, 'r', lw=2) # 真實值的線ax.plot(xdata, f(xdata, *beta_opt), 'b', lw=2) # 擬合的線ax.set_xlim(0, 5)ax.set_xlabel(r"$x$", fontsize=18)ax.set_ylabel(r"$f(x, \beta)$", fontsize=18)fig.tight_layout()
除了使用最小二乘,還可以使用曲線擬合的方法,得到的結果是一樣的。beta_opt, beta_cov = opt.curve_fit(f, xdata, ydata)print beta_opt[ 0.25525709 0.74270226 0.54966466]
有約束的最小化
有約束的最小化是指,要求函數最小化之外,還要滿足約束條件,舉例說明。
邊界約束def f(X): x, y = X return (x-1)**2 + (y-1)**2 # 這是一個碗狀的函數x_opt = opt.minimize(f, (0, 0), method='BFGS').x # 無約束最優(yōu)化
假設有約束條件,x 和 y 要在一定的范圍內,如 x 在 2 到 3 之間,y 在 0 和 2 之間。bnd_x1, bnd_x2 = (2, 3), (0, 2) # 對自變量的約束x_cons_opt = opt.minimize(f, np.array([0, 0]), method='L-BFGS-B', bounds=[bnd_x1, bnd_x2]).x # bounds 矩形約束fig, ax = plt.subplots(figsize=(6, 4))x_ = y_ = np.linspace(-1, 3, 100)X, Y = np.meshgrid(x_, y_)c = ax.contour(X, Y, f((X,Y)), 50)ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15) # 沒有約束下的最小值,藍色五角星ax.plot(x_cons_opt[0], x_cons_opt[1], 'r*', markersize=15) # 有約束下的最小值,紅色星星bound_rect = plt.Rectangle((bnd_x1[0], bnd_x2[0]), bnd_x1[1] - bnd_x1[0], bnd_x2[1] - bnd_x2[0], facecolor="grey")ax.add_patch(bound_rect)ax.set_xlabel(r"$x_1$", fontsize=18)ax.set_ylabel(r"$x_2$", fontsize=18)plt.colorbar(c, ax=ax)fig.tight_layout()
不等式約束
介紹下相關理論,先來看下存在等式約束的極值問題求法,比如下面的優(yōu)化問題。
目標函數是 f(w),下面是等式約束,通常解法是引入拉格朗日算子,這里使用 ββ 來表示算子,得到拉格朗日公式為
l 是等式約束的個數。
然后分別對 w 和ββ 求偏導,使得偏導數等于 0,然后解出 w 和βiβi,至于為什么引入拉格朗日算子可以求出極值,原因是 f(w) 的 dw 變化方向受其他不等式的約束,dw的變化方向與f(w)的梯度垂直時才能獲得極值,而且在極值處,f(w) 的梯度與其他等式梯度的線性組合平行,因此他們之間存在線性關系。(參考《最優(yōu)化與KKT條件》)
對于不等式約束的極值問題
常常利用拉格朗日對偶性將原始問題轉換為對偶問題,通過解對偶問題而得到原始問題的解。該方法應用在許多統(tǒng)計學習方法中。有興趣的可以參閱相關資料,這里不再贅述。def f(X): return (X[0] - 1)**2 + (X[1] - 1)**2def g(X): return X[1] - 1.75 - (X[0] - 0.75)**4x_opt = opt.minimize(f, (0, 0), method='BFGS').xconstraints = [dict(type='ineq', fun=g)] # 約束采用字典定義,約束方式為不等式約束,邊界用 g 表示x_cons_opt = opt.minimize(f, (0, 0), method='SLSQP', constraints=constraints).xfig, ax = plt.subplots(figsize=(6, 4))x_ = y_ = np.linspace(-1, 3, 100)X, Y = np.meshgrid(x_, y_)c = ax.contour(X, Y, f((X, Y)), 50)ax.plot(x_opt[0], x_opt[1], 'b*', markersize=15) # 藍色星星,沒有約束下的最小值ax.plot(x_, 1.75 + (x_-0.75)**4, '', markersize=15)ax.fill_between(x_, 1.75 + (x_-0.75)**4, 3, color="grey")ax.plot(x_cons_opt[0], x_cons_opt[1], 'r*', markersize=15) # 在區(qū)域約束下的最小值ax.set_ylim(-1, 3)ax.set_xlabel(r"$x_0$", fontsize=18)ax.set_ylabel(r"$x_1$", fontsize=18)plt.colorbar(c, ax=ax)fig.tight_layout()
scipy.optimize.minimize 中包括了多種最優(yōu)化算法,每種算法使用范圍不同,詳細參考官方文檔。
1、什么是多元線性回歸模型?
當y值的影響因素不唯一時,采用多元線性回歸模型。
y =y=β0+β1x1+β2x2+...+βnxn
例如商品的銷售額可能不電視廣告投入,收音機廣告投入,報紙廣告投入有關系,可以有 sales =β0+β1*TV+β2* radio+β3*newspaper.
2、使用pandas來讀取數據
pandas 是一個用于數據探索、數據分析和數據處理的python庫
[python]?view plain?copy
import?pandas?as?pd
[html]?view plain?copy
pre?name="code"?class="python"#?read?csv?file?directly?from?a?URL?and?save?the?results
data?=?pd.read_csv('/home/lulei/Advertising.csv')
#?display?the?first?5?rows
data.head()
上面代碼的運行結果:
TV ?Radio ?Newspaper ?Sales
0 ?230.1 ? 37.8 ? ? ? 69.2 ? 22.1
1 ? 44.5 ? 39.3 ? ? ? 45.1 ? 10.4
2 ? 17.2 ? 45.9 ? ? ? 69.3 ? ?9.3
3 ?151.5 ? 41.3 ? ? ? 58.5 ? 18.5
4 ?180.8 ? 10.8 ? ? ? 58.4 ? 12.9
上面顯示的結果類似一個電子表格,這個結構稱為Pandas的數據幀(data frame),類型全稱:pandas.core.frame.DataFrame.
pandas的兩個主要數據結構:Series和DataFrame:
Series類似于一維數組,它有一組數據以及一組與之相關的數據標簽(即索引)組成。
DataFrame是一個表格型的數據結構,它含有一組有序的列,每列可以是不同的值類型。DataFrame既有行索引也有列索引,它可以被看做由Series組成的字典。
[python]?view plain?copy
#?display?the?last?5?rows
data.tail()
只顯示結果的末尾5行
?TV ?Radio ?Newspaper ?Sales
195 ? 38.2 ? ?3.7 ? ? ? 13.8 ? ?7.6
196 ? 94.2 ? ?4.9 ? ? ? ?8.1 ? ?9.7
197 ?177.0 ? ?9.3 ? ? ? ?6.4 ? 12.8
198 ?283.6 ? 42.0 ? ? ? 66.2 ? 25.5
199 ?232.1 ? ?8.6 ? ? ? ?8.7 ? 13.4
[html]?view plain?copy
#?check?the?shape?of?the?DataFrame(rows,?colums)
data.shape
查看DataFrame的形狀,注意第一列的叫索引,和數據庫某個表中的第一列類似。
(200,4)?
3、分析數據
特征:
TV:對于一個給定市場中單一產品,用于電視上的廣告費用(以千為單位)
Radio:在廣播媒體上投資的廣告費用
Newspaper:用于報紙媒體的廣告費用
響應:
Sales:對應產品的銷量
在這個案例中,我們通過不同的廣告投入,預測產品銷量。因為響應變量是一個連續(xù)的值,所以這個問題是一個回歸問題。數據集一共有200個觀測值,每一組觀測對應一個市場的情況。
注意:這里推薦使用的是seaborn包。網上說這個包的數據可視化效果比較好看。其實seaborn也應該屬于matplotlib的內部包。只是需要再次的單獨安裝。
[python]?view plain?copy
import?seaborn?as?sns
import?matplotlib.pyplot?as?plt
#?visualize?the?relationship?between?the?features?and?the?response?using?scatterplots
sns.pairplot(data,?x_vars=['TV','Radio','Newspaper'],?y_vars='Sales',?size=7,?aspect=0.8)
plt.show()#注意必須加上這一句,否則無法顯示。
[html]?view plain?copy
這里選擇TV、Radio、Newspaper?作為特征,Sales作為觀測值
[html]?view plain?copy
返回的結果:
seaborn的pairplot函數繪制X的每一維度和對應Y的散點圖。通過設置size和aspect參數來調節(jié)顯示的大小和比例。可以從圖中看出,TV特征和銷量是有比較強的線性關系的,而Radio和Sales線性關系弱一些,Newspaper和Sales線性關系更弱。通過加入一個參數kind='reg',seaborn可以添加一條最佳擬合直線和95%的置信帶。
[python]?view plain?copy
sns.pairplot(data,?x_vars=['TV','Radio','Newspaper'],?y_vars='Sales',?size=7,?aspect=0.8,?kind='reg')
plt.show()
結果顯示如下:
4、線性回歸模型
優(yōu)點:快速;沒有調節(jié)參數;可輕易解釋;可理解。
缺點:相比其他復雜一些的模型,其預測準確率不是太高,因為它假設特征和響應之間存在確定的線性關系,這種假設對于非線性的關系,線性回歸模型顯然不能很好的對這種數據建模。
線性模型表達式:?y=β0+β1x1+β2x2+...+βnxn?其中
y是響應
β0是截距
β1是x1的系數,以此類推
在這個案例中:?y=β0+β1?TV+β2?Radio+...+βn?Newspaper
(1)、使用pandas來構建X(特征向量)和y(標簽列)
scikit-learn要求X是一個特征矩陣,y是一個NumPy向量。
pandas構建在NumPy之上。
因此,X可以是pandas的DataFrame,y可以是pandas的Series,scikit-learn可以理解這種結構。
[python]?view plain?copy
#create?a?python?list?of?feature?names
feature_cols?=?['TV',?'Radio',?'Newspaper']
#?use?the?list?to?select?a?subset?of?the?original?DataFrame
X?=?data[feature_cols]
#?equivalent?command?to?do?this?in?one?line
X?=?data[['TV',?'Radio',?'Newspaper']]
#?print?the?first?5?rows
print?X.head()
#?check?the?type?and?shape?of?X
print?type(X)
print?X.shape
輸出結果如下:
TV ?Radio ?Newspaper
0 ?230.1 ? 37.8 ? ? ? 69.2
1 ? 44.5 ? 39.3 ? ? ? 45.1
2 ? 17.2 ? 45.9 ? ? ? 69.3
3 ?151.5 ? 41.3 ? ? ? 58.5
4 ?180.8 ? 10.8 ? ? ? 58.4
class 'pandas.core.frame.DataFrame'
(200, 3)
[python]?view plain?copy
#?select?a?Series?from?the?DataFrame
y?=?data['Sales']
#?equivalent?command?that?works?if?there?are?no?spaces?in?the?column?name
y?=?data.Sales
#?print?the?first?5?values
print?y.head()
輸出的結果如下:
0 ? ?22.1
1 ? ?10.4
2 ? ? 9.3
3 ? ?18.5
4 ? ?12.9
Name: Sales
(2)、構建訓練集與測試集
[html]?view plain?copy
pre?name="code"?class="python"span?style="font-size:14px;"##構造訓練集和測試集
from?sklearn.cross_validation?import?train_test_split??#這里是引用了交叉驗證
X_train,X_test,?y_train,?y_test?=?train_test_split(X,?y,?random_state=1)
#default split is 75% for training and 25% for testing
[html]?view plain?copy
print?X_train.shape
print?y_train.shape
print?X_test.shape
print?y_test.shape
輸出結果如下:
(150, 3)
(150,)
(50, 3)
(50,)
注:上面的結果是由train_test_spilit()得到的,但是我不知道為什么我的版本的sklearn包中居然報錯:
ImportError ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Traceback (most recent call last)ipython-input-182-3eee51fcba5a in module() ? ? ?1 ###構造訓練集和測試集---- 2 from sklearn.cross_validation import train_test_split ? ? ?3 #import sklearn.cross_validation ? ? ?4 X_train,X_test, y_train, y_test = train_test_split(X, y, random_state=1) ? ? ?5 # default split is 75% for training and 25% for testingImportError: cannot import name train_test_split
處理方法:1、我后來重新安裝sklearn包。再一次調用時就沒有錯誤了。
2、自己寫函數來認為的隨機構造訓練集和測試集。(這個代碼我會在最后附上。)
(3)sklearn的線性回歸
[html]?view plain?copy
from?sklearn.linear_model?import?LinearRegression
linreg?=?LinearRegression()
model=linreg.fit(X_train,?y_train)
print?model
print?linreg.intercept_
print?linreg.coef_
輸出的結果如下:
LinearRegression(copy_X=True, fit_intercept=True, normalize=False)
2.66816623043
[ 0.04641001 ?0.19272538 -0.00349015]
[html]?view plain?copy
#?pair?the?feature?names?with?the?coefficients
zip(feature_cols,?linreg.coef_)
輸出如下:
[('TV', 0.046410010869663267),
('Radio', 0.19272538367491721),
('Newspaper', -0.0034901506098328305)]
y=2.668+0.0464?TV+0.192?Radio-0.00349?Newspaper
如何解釋各個特征對應的系數的意義?
對于給定了Radio和Newspaper的廣告投入,如果在TV廣告上每多投入1個單位,對應銷量將增加0.0466個單位。就是加入其它兩個媒體投入固定,在TV廣告上每增加1000美元(因為單位是1000美元),銷量將增加46.6(因為單位是1000)。但是大家注意這里的newspaper的系數居然是負數,所以我們可以考慮不使用newspaper這個特征。這是后話,后面會提到的。
(4)、預測
[python]?view plain?copy
y_pred?=?linreg.predict(X_test)
print?y_pred
[python]?view plain?copy
print?type(y_pred)
輸出結果如下:
[ 14.58678373 ? 7.92397999 ?16.9497993 ? 19.35791038 ? 7.36360284
7.35359269 ?16.08342325 ? 9.16533046 ?20.35507374 ?12.63160058
22.83356472 ? 9.66291461 ? 4.18055603 ?13.70368584 ?11.4533557
4.16940565 ?10.31271413 ?23.06786868 ?17.80464565 ?14.53070132
15.19656684 ?14.22969609 ? 7.54691167 ?13.47210324 ?15.00625898
19.28532444 ?20.7319878 ? 19.70408833 ?18.21640853 ? 8.50112687
9.8493781 ? ?9.51425763 ? 9.73270043 ?18.13782015 ?15.41731544
5.07416787 ?12.20575251 ?14.05507493 ?10.6699926 ? ?7.16006245
11.80728836 ?24.79748121 ?10.40809168 ?24.05228404 ?18.44737314
20.80572631 ? 9.45424805 ?17.00481708 ? 5.78634105 ? 5.10594849]
type 'numpy.ndarray'
5、回歸問題的評價測度
(1) 評價測度
對于分類問題,評價測度是準確率,但這種方法不適用于回歸問題。我們使用針對連續(xù)數值的評價測度(evaluation metrics)。
這里介紹3種常用的針對線性回歸的測度。
1)平均絕對誤差(Mean Absolute Error, MAE)
(2)均方誤差(Mean Squared Error, MSE)
(3)均方根誤差(Root Mean Squared Error, RMSE)
這里我使用RMES。
[python]?view plain?copy
pre?name="code"?class="python"#計算Sales預測的RMSE
print?type(y_pred),type(y_test)
print?len(y_pred),len(y_test)
print?y_pred.shape,y_test.shape
from?sklearn?import?metrics
import?numpy?as?np
sum_mean=0
for?i?in?range(len(y_pred)):
sum_mean+=(y_pred[i]-y_test.values[i])**2
sum_erro=np.sqrt(sum_mean/50)
#?calculate?RMSE?by?hand
print?"RMSE?by?hand:",sum_erro
最后的結果如下:
type 'numpy.ndarray' class 'pandas.core.series.Series'
50 50
(50,) (50,)
RMSE by hand: 1.42998147691
(2)做ROC曲線
[python]?view plain?copy
import?matplotlib.pyplot?as?plt
plt.figure()
plt.plot(range(len(y_pred)),y_pred,'b',label="predict")
plt.plot(range(len(y_pred)),y_test,'r',label="test")
plt.legend(loc="upper?right")?#顯示圖中的標簽
plt.xlabel("the?number?of?sales")
plt.ylabel('value?of?sales')
plt.show()
顯示結果如下:(紅色的線是真實的值曲線,藍色的是預測值曲線)
直到這里整個的一次多元線性回歸的預測就結束了。
6、改進特征的選擇
在之前展示的數據中,我們看到Newspaper和銷量之間的線性關系竟是負關系(不用驚訝,這是隨機特征抽樣的結果。換一批抽樣的數據就可能為正了),現在我們移除這個特征,看看線性回歸預測的結果的RMSE如何?
依然使用我上面的代碼,但只需修改下面代碼中的一句即可:
[python]?view plain?copy
#create?a?python?list?of?feature?names
feature_cols?=?['TV',?'Radio',?'Newspaper']
#?use?the?list?to?select?a?subset?of?the?original?DataFrame
X?=?data[feature_cols]
#?equivalent?command?to?do?this?in?one?line
#X?=?data[['TV',?'Radio',?'Newspaper']]#只需修改這里即可pre?name="code"?class="python"?style="font-size:?15px;?line-height:?35px;"X?=?data[['TV',?'Radio']]??#去掉newspaper其他的代碼不變
# print the first 5 rowsprint X.head()# check the type and shape of Xprint type(X)print X.shape
最后的到的系數與測度如下:
LinearRegression(copy_X=True, fit_intercept=True, normalize=False)
2.81843904823
[ 0.04588771 ?0.18721008]
RMSE by hand: 1.28208957507
然后再次使用ROC曲線來觀測曲線的整體情況。我們在將Newspaper這個特征移除之后,得到RMSE變小了,說明Newspaper特征可能不適合作為預測銷量的特征,于是,我們得到了新的模型。我們還可以通過不同的特征組合得到新的模型,看看最終的誤差是如何的。
備注:
之前我提到了這種錯誤:
注:上面的結果是由train_test_spilit()得到的,但是我不知道為什么我的版本的sklearn包中居然報錯:
ImportError ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? Traceback (most recent call last)ipython-input-182-3eee51fcba5a in module() ? ? ?1 ###構造訓練集和測試集---- 2 from sklearn.cross_validation import train_test_split ? ? ?3 #import sklearn.cross_validation ? ? ?4 X_train,X_test, y_train, y_test = train_test_split(X, y, random_state=1) ? ? ?5 # default split is 75% for training and 25% for testingImportError: cannot import name train_test_split
處理方法:1、我后來重新安裝sklearn包。再一次調用時就沒有錯誤了。
2、自己寫函數來認為的隨機構造訓練集和測試集。(這個代碼我會在最后附上。)
這里我給出我自己寫的函數:
這是一段用 Python 來實現 SVM 多元回歸預測的代碼示例:
# 導入相關庫
from sklearn import datasets
from sklearn.svm import SVR
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 加載數據集
X, y = datasets.load_boston(return_X_y=True)
# 將數據集拆分為訓練集和測試集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 創(chuàng)建SVM多元回歸模型
reg = SVR(C=1.0, epsilon=0.2)
# 訓練模型
reg.fit(X_train, y_train)
# 預測結果
y_pred = reg.predict(X_test)
# 計算均方誤差
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
在這段代碼中,首先導入了相關的庫,包括 SVR 函數、train_test_split 函數和 mean_squared_error 函數。然后,使用 load_boston 函數加載數據集,并將數據集分為訓練集和測試集。接著,使用 SVR 函數創(chuàng)建了一個 SVM 多元回歸模型,并使用 fit 函數對模型進行訓練。最后,使用 predict 函數進行預測,并使用 mean_squared_error 函數計算均方誤差。
需要注意的是,這僅僅是一個示例代碼,在實際應用中,可能需要根據項目的需求進行更改,例如使用不同的超參數
網頁名稱:python多元函數值 python支持多元賦值和多重賦值嗎
文章起源:http://chinadenli.net/article32/dojgspc.html
成都網站建設公司_創(chuàng)新互聯,為您提供企業(yè)網站制作、網站維護、小程序開發(fā)、定制網站、網站營銷、網頁設計公司
聲明:本網站發(fā)布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網站立場,如需處理請聯系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯