答: 在這里我的思路是利用Python函數(shù)同時接受多個參數(shù),然后在函數(shù)的內(nèi)部,它的功能是返回各輸入?yún)?shù)對應(yīng)的乘積。如下所示,可以使用*nums作為輸入?yún)?shù)以同時接受多個參數(shù)。對應(yīng)代碼如下所示:

龍泉網(wǎng)站制作公司哪家好,找成都創(chuàng)新互聯(lián)公司!從網(wǎng)頁設(shè)計、網(wǎng)站建設(shè)、微信開發(fā)、APP開發(fā)、響應(yīng)式網(wǎng)站建設(shè)等網(wǎng)站項目制作,到程序開發(fā),運(yùn)營維護(hù)。成都創(chuàng)新互聯(lián)公司2013年開創(chuàng)至今到現(xiàn)在10年的時間,我們擁有了豐富的建站經(jīng)驗和運(yùn)維經(jīng)驗,來保證我們的工作的順利進(jìn)行。專注于網(wǎng)站建設(shè)就選成都創(chuàng)新互聯(lián)公司。
本次例子是對1,3,5,7和9進(jìn)行累乘,本次的結(jié)果為945,如下所示,計算正確。
同樣地,我們也可以使用其他例子進(jìn)行測試,也可以得到正確的結(jié)果。
代碼如下:
#coding=utf-8
n?=?int(input('請輸入一個正整數(shù):'))
num?=?1
for?i?in?range(1,?n?+?1):
num?=?num?*?i
print('結(jié)果:',?num)
運(yùn)行結(jié)果:
有些Python小白對numpy中的常見函數(shù)不太了解,今天小編就整理出來分享給大家。
Numpy是Python的一個科學(xué)計算的庫,提供了矩陣運(yùn)算的功能,其一般與Scipy、matplotlib一起使用。其實,list已經(jīng)提供了類似于矩陣的表示形式,不過numpy為我們提供了更多的函數(shù)。
數(shù)組常用函數(shù)
1.where()按條件返回數(shù)組的索引值
2.take(a,index)從數(shù)組a中按照索引index取值
3.linspace(a,b,N)返回一個在(a,b)范圍內(nèi)均勻分布的數(shù)組,元素個數(shù)為N個
4.a.fill()將數(shù)組的所有元素以指定的值填充
5.diff(a)返回數(shù)組a相鄰元素的差值構(gòu)成的數(shù)組
6.sign(a)返回數(shù)組a的每個元素的正負(fù)符號
7.piecewise(a,[condlist],[funclist])數(shù)組a根據(jù)布爾型條件condlist返回對應(yīng)元素結(jié)果
8.a.argmax(),a.argmin()返回a最大、最小元素的索引
改變數(shù)組維度
a.ravel(),a.flatten():將數(shù)組a展平成一維數(shù)組
a.shape=(m,n),a.reshape(m,n):將數(shù)組a轉(zhuǎn)換成m*n維數(shù)組
a.transpose,a.T轉(zhuǎn)置數(shù)組a
數(shù)組組合
1.hstack((a,b)),concatenate((a,b),axis=1)將數(shù)組a,b沿水平方向組合
2.vstack((a,b)),concatenate((a,b),axis=0)將數(shù)組a,b沿豎直方向組合
3.row_stack((a,b))將數(shù)組a,b按行方向組合
4.column_stack((a,b))將數(shù)組a,b按列方向組合
數(shù)組分割
1.split(a,n,axis=0),vsplit(a,n)將數(shù)組a沿垂直方向分割成n個數(shù)組
2.split(a,n,axis=1),hsplit(a,n)將數(shù)組a沿水平方向分割成n個數(shù)組
數(shù)組修剪和壓縮
1.a.clip(m,n)設(shè)置數(shù)組a的范圍為(m,n),數(shù)組中大于n的元素設(shè)定為n,小于m的元素設(shè)定為m
2.a.compress()返回根據(jù)給定條件篩選后的數(shù)組
數(shù)組屬性
1.a.dtype數(shù)組a的數(shù)據(jù)類型
2.a.shape數(shù)組a的維度
3.a.ndim數(shù)組a的維數(shù)
4.a.size數(shù)組a所含元素的總個數(shù)
5.a.itemsize數(shù)組a的元素在內(nèi)存中所占的字節(jié)數(shù)
6.a.nbytes整個數(shù)組a所占的內(nèi)存空間7.a.astype(int)轉(zhuǎn)換a數(shù)組的類型為int型
數(shù)組計算
1.average(a,weights=v)對數(shù)組a以權(quán)重v進(jìn)行加權(quán)平均
2.mean(a),max(a),min(a),middle(a),var(a),std(a)數(shù)組a的均值、最大值、最小值、中位數(shù)、方差、標(biāo)準(zhǔn)差
3.a.prod()數(shù)組a的所有元素的乘積
4.a.cumprod()數(shù)組a的元素的累積乘積
5.cov(a,b),corrcoef(a,b)數(shù)組a和b的協(xié)方差、相關(guān)系數(shù)
6.a.diagonal()查看矩陣a對角線上的元素7.a.trace()計算矩陣a的跡,即對角線元素之和
以上就是numpy中的常見函數(shù)。更多Python學(xué)習(xí)推薦:PyThon學(xué)習(xí)網(wǎng)教學(xué)中心。
import?math
def?multi(a,b):
return?a*b
if?__name__=="__main__":
a,b,c=map(int,input().split())?#一行輸入用空格分割
print(multi(multi(a,b),c))
#?-*-?coding:utf-8?-*-
#py3
'''
用高級函數(shù)reduce()
'''
from?functools?import?reduce
lis=[1,2,3,4,5]
r=reduce(lambda?x,y:x*y,lis)#對序列l(wèi)is中元素逐項相乘lambda用法請自行度娘
print(r)
reduce把一個函數(shù)作用在一個序列[x1, x2, x3, ...]上,這個函數(shù)必須接收兩個參數(shù),reduce把結(jié)果繼續(xù)和序列的下一個元素做累積計算,其效果就是:
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)
比方說對一個序列求和,就可以用reduce實現(xiàn),比如:
from?functools?import?reduce
def?add(x,y):
return?x+y
reduce(add,[1,2,3])
#結(jié)果是6
本文標(biāo)題:python中乘積的函數(shù),python求累乘函數(shù)
網(wǎng)站網(wǎng)址:http://chinadenli.net/article24/hcjsje.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供外貿(mào)建站、定制網(wǎng)站、品牌網(wǎng)站設(shè)計、品牌網(wǎng)站制作、品牌網(wǎng)站建設(shè)、外貿(mào)網(wǎng)站建設(shè)
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)