一、使用遞歸的背景
創(chuàng)新互聯(lián)公司是網(wǎng)站建設(shè)技術(shù)企業(yè),為成都企業(yè)提供專業(yè)的做網(wǎng)站、成都網(wǎng)站制作,網(wǎng)站設(shè)計,網(wǎng)站制作,網(wǎng)站改版等技術(shù)服務(wù)。擁有十載豐富建站經(jīng)驗和眾多成功案例,為您定制適合企業(yè)的網(wǎng)站。十載品質(zhì),值得信賴!
先來看一個??接口結(jié)構(gòu):
這個孩子,他是一個列表,下面有6個元素
展開children下第一個元素[0]看看:
發(fā)現(xiàn)[0]除了包含一些字段信息,還包含了 children 這個字段(喜當(dāng)?shù)瑫r這個children下包含了2個元素:
展開他的第一個元素,不出所料,也含有children字段(人均有娃)
可以理解為children是個對象,他包含了一些屬性,特別的是其中有一個屬性與父級children是一模一樣的,他包含父級children所有的屬性。
比如每個children都包含了一個name字段,我們要拿到所有children里name字段的值,這時候就要用到遞歸啦~
二、find_children.py
拆分理解:
1.首先import requests庫,用它請求并獲取接口返回的數(shù)據(jù)
2.若children以上還有很多層級,可以縮小數(shù)據(jù)范圍,定位到children的上一層級
3.來看看定義的函數(shù)
我們的函數(shù)調(diào)用:find_children(node_f, 'children')
其中,node_f:json字段
??? children:遞歸對象
?以下這段是實現(xiàn)遞歸的核心:
?? if items['children']:
?items['children']不為None,表示該元素下的children字段還有子類數(shù)據(jù)值,此時滿足if條件,可理解為 if 1。
?items['children']為None,表示該元素下children值為None,沒有后續(xù)可遞歸值,此時不滿足if條件,可理解為 if 0,不會再執(zhí)行if下的語句(不會再遞歸)。
至此,每一層級中children的name以及下一層級children的name就都取出來了
希望到這里能幫助大家理解遞歸的思路,以后根據(jù)這個模板直接套用就行
(晚安啦~)
源碼參考:
首先我們要了解一下什么是遞歸。
遞歸法,遞歸法就是利用上一個或者上幾個狀態(tài)來求取當(dāng)前狀態(tài)的值(個人看法)。也可以說成函數(shù)自己調(diào)用自己的一種解決問題的策略。因此遞歸法通常是依托函數(shù)來實現(xiàn)的,遞歸函數(shù)總是會有一個出口,我們在解決遞歸問題時,只需要找出遞歸的關(guān)系式以及遞歸函數(shù)的出口(這兩個可以說是遞歸函數(shù)的核心了)。下面我將在這里舉求斐波那契值的例子帶領(lǐng)著大家具體的實踐一下遞歸法。
很顯然遞歸函數(shù)的遞推式是:fib(n) = fib(n-1)+fib(n-2)。
遞歸函數(shù)的出口是當(dāng)n為1時返回1,當(dāng)n為0時返回0。
最后遞歸函數(shù)的核心代碼就可以寫出了:
然后總的代碼就是:
具體思路如下:
語句 return fib(n-1)+fib(n-2)的意思就是向前求斐波那契值,直到n-1=1,n-2=0
因為只有第1個和第0個斐波那契值是確定的
例:
當(dāng)n=3時
第一次調(diào)用函數(shù)fib會執(zhí)行第三條語句(因為n1)這樣求回返回fib(2)+fib(1)
第二次調(diào)用函數(shù)時,因為21所有會返回fib(1)+fib(0);因為1不大于1,所以調(diào)用函數(shù)時
會執(zhí)行第二條語句返回1值。
第三次調(diào)用函數(shù),會執(zhí)行第一和第二條語句,依次返回0和1從而求得fib(2)
fib(3)=fib(2)+fib(1)
fib(2)=fib(1)+fib(0)
即fib(3)=fib(1)+fib(0)+fib(1)=2*fib(1)+fib(0)
函數(shù)的遞歸調(diào)用
遞歸問題是一個說簡單也簡單,說難也有點難理解的問題.我想非常有必要對其做一個總結(jié).
首先理解一下遞歸的定義,遞歸就是直接或間接的調(diào)用自身.而至于什么時候要用到遞歸,遞歸和非遞歸又有那些區(qū)別?又是一個不太容易掌握的問題,更難的是對于遞歸調(diào)用的理解.下面我們就從程序+圖形的角度對遞歸做一個全面的闡述.
我們從常見到的遞歸問題開始:
1 階層函數(shù)
#include iostream
using namespace std;
int factorial(int n)
{
if (n == 0)
{
return 1;
}
else
{
int result = factorial(n-1);
return n * result;
}
}
int main()
{
int x = factorial(3);
cout x endl;
return 0;
}
這是一個遞歸求階層函數(shù)的實現(xiàn)。很多朋友只是知道該這么實現(xiàn)的,也清楚它是通過不斷的遞歸調(diào)用求出的結(jié)果.但他們有些不清楚中間發(fā)生了些什么.下面我們用圖對此做一個清楚的流程:
根據(jù)上面這個圖,大家可以很清楚的看出來這個函數(shù)的執(zhí)行流程。我們的階層函數(shù)factorial被調(diào)用了4次.并且我們可以看出在調(diào)用后面的調(diào)用中,前面的調(diào)用并不退出。他們同時存在內(nèi)存中。可見這是一件很浪費資源的事情。我們該次的參數(shù)是3.如果我們傳遞10000呢。那結(jié)果就可想而知了.肯定是溢出了.就用int型來接收結(jié)果別說10000,100就會產(chǎn)生溢出.即使不溢出我想那肯定也是見很浪費資源的事情.我們可以做一個粗略的估計:每次函數(shù)調(diào)用就單變量所需的內(nèi)存為:兩個int型變量.n和result.在32位機器上占8B.那么10000就需要10001次函數(shù)調(diào)用.共需10001*8/1024 = 78KB.這只是變量所需的內(nèi)存空間.其它的函數(shù)調(diào)用時函數(shù)入口地址等仍也需要占用內(nèi)存空間。可見遞歸調(diào)用產(chǎn)生了一個不小的開銷.
2 斐波那契數(shù)列
int Fib(int n)
{
if (n = 1)
{
return n;
}
else
{
return Fib(n-1) + Fib(n-2);
}
}
這個函數(shù)遞歸與上面的那個有些不同.每次調(diào)用函數(shù)都會引起另外兩次的調(diào)用.最后將結(jié)果逐級返回.
我們可以看出這個遞歸函數(shù)同樣在調(diào)用后買的函數(shù)時,前面的不退出而是在等待后面的結(jié)果,最后求出總結(jié)果。這就是遞歸.
3
#include iostream
using namespace std;
void recursiveFunction1(int num)
{
if (num 5)
{
cout num endl;
recursiveFunction1(num+1);
}
}
void recursiveFunction2(int num)
{
if (num 5)
{
recursiveFunction2(num+1);
cout num endl;
}
}
int main()
{
recursiveFunction1(0);
recursiveFunction2(0);
return 0;
}
運行結(jié)果:
1
2
3
4
4
3
2
1
該程序中有兩個遞歸函數(shù)。傳遞同樣的參數(shù),但他們的輸出結(jié)果剛好相反。理解這兩個函數(shù)的調(diào)用過程可以很好的幫助我們理解遞歸:
我想能夠把上面三個函數(shù)的遞歸調(diào)用過程理解了,你已經(jīng)把遞歸調(diào)用理解的差不多了.并且從上面的遞歸調(diào)用中我們可以總結(jié)出遞歸的一個規(guī)律:他是逐級的調(diào)用,而在函數(shù)結(jié)束的時候是從最后面往前反序的結(jié)束.這種方式是很占用資源,也很費時的。但是有的時候使用遞歸寫出來的程序很容易理解,很易讀.
為什么使用遞歸:
1 有時候使用遞歸寫出來的程序很容易理解,很易讀.
2 有些問題只有遞歸能夠解決.非遞歸的方法無法實現(xiàn).如:漢諾塔.
遞歸的條件:
并不是說所有的問題都可以使用遞歸解決,他必須的滿足一定的條件。即有一個出口點.也就是說當(dāng)滿足一定條件時,程序可以結(jié)束,從而完成遞歸調(diào)用,否則就陷入了無限的遞歸調(diào)用之中了.并且這個條件還要是可達(dá)到的.
遞歸有哪些優(yōu)點:
易讀,容易理解,代碼一般比較短.
遞歸有哪些缺點:
占用內(nèi)存資源多,費時,效率低下.
因此在我們寫程序的時候不要輕易的使用遞歸,雖然他有他的優(yōu)點,但是我們要在易讀性和空間,效率上多做權(quán)衡.一般情況下我們還是使用非遞歸的方法解決問題.若一個算法非遞歸解法非常難于理解。我們使用遞歸也未嘗不可.如:二叉樹的遍歷算法.非遞歸的算法很難與理解.而相比遞歸算法就容易理解很多.
對于遞歸調(diào)用的問題,我們在前一段時間寫圖形學(xué)程序時,其中有一個四連同填充算法就是使用遞歸的方法。結(jié)果當(dāng)要填充的圖形稍微大一些時,程序就自動關(guān)閉了.這不是一個人的問題,所有人寫出來的都是這個問題.當(dāng)時我們給與的解釋就是堆棧溢出。就多次遞歸調(diào)用占用太多的內(nèi)存資源致使堆棧溢出,程序沒有內(nèi)存資源執(zhí)行下去,從而被操作系統(tǒng)強制關(guān)閉了.這是一個真真切切的例子。所以我們在使用遞歸的時候需要權(quán)衡再三.
簡單說,解決以上問題的思路是,循環(huán)執(zhí)行n*n-1,直到n=1時。
#!/usr/local/bin/python3.3def recursion(n): #定義函數(shù) if n == 1: return 1 else:
return n * recursion(n-1)print(recursion(10))
該示例執(zhí)行結(jié)果是:
如何理解呢?第一點,函數(shù)中,調(diào)用自身函數(shù)的那部分句子,即return n *
recursion(n-1),把recursion(n-1)想像成另一個獨立的函數(shù),該函數(shù)的功能返回n-1的值,如果n的值是1,則返回1,函數(shù)運行結(jié)束。第二點,直觀的看,可以把return
n * recursion(n-1)看成return n*(n-1)*(n-2)...1。而遞歸函數(shù)無非是在指定的條件下做普通的循環(huán)而已。
遞歸的思想主要是能夠重復(fù)某些動作,比如簡單的階乘,次方,回溯中的八皇后,數(shù)獨,還有漢諾塔,分形。
由于堆棧的機制,一般的遞歸可以保留某些變量在歷史狀態(tài)中,比如你提到的return x * power..., 但是某些或許龐大的問題或者是深度過大的問題就需要盡量避免遞歸,因為可能會棧溢出。還有一個問題是~python不支持尾遞歸優(yōu)化!!!!所以~還是盡量避免遞歸的出現(xiàn)。
def power(x, n)
if n 0:
return 1
return x * power(x, n - 1)
power(3, 3)
3 * power(3, 2)
3 * (3 * power(3, 1))
3 * (3 * (3 * power(3, 0)))
3 * (3 * (3 * 1)) 這里n = 0, return 1
3 * (3 * 3)
3 * 9
27
當(dāng)函數(shù)形參n=0的時候,開始回退~直到第一次調(diào)用power結(jié)束。
可以看出來的是,該題可以用斐波那契數(shù)列解決。
樓梯一共有n層,每次只能走1層或者2層,而要走到最終的n層。不是從n-1或者就是n-2來的。
F(1) = 1
F(2) = 2
F(n) = F(n-1) + F(n-2) (n=3)
這是遞歸寫法,但是會導(dǎo)致棧溢出。在計算機中,函數(shù)的調(diào)用是通過棧進行實現(xiàn)的,如果遞歸調(diào)用的次數(shù)過多,就會導(dǎo)致棧溢出。
針對這種情況就要使用方法二,改成非遞歸函數(shù)。
將遞歸進行改寫,實現(xiàn)循環(huán)就不會導(dǎo)致棧溢出
分享標(biāo)題:遞歸函數(shù)調(diào)用python,遞歸函數(shù)調(diào)用的數(shù)據(jù)結(jié)構(gòu)
標(biāo)題鏈接:http://chinadenli.net/article20/hedijo.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供品牌網(wǎng)站設(shè)計、用戶體驗、關(guān)鍵詞優(yōu)化、響應(yīng)式網(wǎng)站、移動網(wǎng)站建設(shè)、面包屑導(dǎo)航
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)