欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

怎么在Tensorflow中使用tfrecord輸入數(shù)據(jù)格式-創(chuàng)新互聯(lián)

本篇文章給大家分享的是有關怎么在Tensorflow中使用tfrecord輸入數(shù)據(jù)格式,小編覺得挺實用的,因此分享給大家學習,希望大家閱讀完這篇文章后可以有所收獲,話不多說,跟著小編一起來看看吧。

10年積累的成都網(wǎng)站設計、網(wǎng)站制作經驗,可以快速應對客戶對網(wǎng)站的新想法和需求。提供各種問題對應的解決方案。讓選擇我們的客戶得到更好、更有力的網(wǎng)絡服務。我雖然不認識你,你也不認識我。但先網(wǎng)站策劃后付款的網(wǎng)站建設流程,更有江口免費網(wǎng)站建設讓你可以放心的選擇與我們合作。

1. TFRecord格式介紹

TFRecord文件中的數(shù)據(jù)是通過tf.train.Example Protocol Buffer的格式存儲的,下面是tf.train.Example的定義

message Example {
 Features features = 1;
};

message Features{
 map<string,Feature> featrue = 1;
};

message Feature{
  oneof kind{
    BytesList bytes_list = 1;
    FloatList float_list = 2;
    Int64List int64_list = 3;
  }
};

從上述代碼可以看到,ft.train.Example 的數(shù)據(jù)結構相對簡潔。tf.train.Example中包含了一個從屬性名稱到取值的字典,其中屬性名稱為一個字符串,屬性的取值可以為字符串(BytesList ),實數(shù)列表(FloatList )或整數(shù)列表(Int64List )。例如我們可以將解碼前的圖片作為字符串,圖像對應的類別標號作為整數(shù)列表。

2. 將自己的數(shù)據(jù)轉化為TFRecord格式

準備數(shù)據(jù)

在上一篇中,我們?yōu)榱讼駛ゴ蟮腗NIST致敬,所以選擇圖像的前綴來進行不同類別的分類依據(jù),但是大多數(shù)的情況下,在進行分類任務的過程中,不同的類別都會放在不同的文件夾下,而且類別的個數(shù)往往浮動性又很大,所以針對這樣的情況,我們現(xiàn)在利用不同類別在不同文件夾中的圖像來生成TFRecord.

我們在Iris&Contact這個文件夾下有兩個文件夾,分別為iris,contact。對于每個文件夾中存放的是對應的圖片

轉換數(shù)據(jù)

數(shù)據(jù)準備好以后,就開始準備生成TFRecord,具體代碼如下:

import os 
import tensorflow as tf 
from PIL import Image 
import matplotlib.pyplot as plt 

cwd='/home/ruyiwei/Documents/Iris&Contact/'
classes={'iris','contact'} 
writer= tf.python_io.TFRecordWriter("iris_contact.tfrecords") 

for index,name in enumerate(classes):
  class_path=cwd+name+'/'
  for img_name in os.listdir(class_path): 
    img_path=class_path+img_name 
    img=Image.open(img_path)
    img= img.resize((512,80))
    img_raw=img.tobytes()
    #plt.imshow(img) # if you want to check you image,please delete '#'
    #plt.show()
    example = tf.train.Example(features=tf.train.Features(feature={
      "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),
      'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
    })) 
    writer.write(example.SerializeToString()) 

writer.close()

3. Tensorflow從TFRecord中讀取數(shù)據(jù)

def read_and_decode(filename): # read iris_contact.tfrecords
  filename_queue = tf.train.string_input_producer([filename])# create a queue

  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)#return file_name and file
  features = tf.parse_single_example(serialized_example,
                    features={
                      'label': tf.FixedLenFeature([], tf.int64),
                      'img_raw' : tf.FixedLenFeature([], tf.string),
                    })#return image and label

  img = tf.decode_raw(features['img_raw'], tf.uint8)
  img = tf.reshape(img, [512, 80, 3]) #reshape image to 512*80*3
  img = tf.cast(img, tf.float32) * (1. / 255) - 0.5 #throw img tensor
  label = tf.cast(features['label'], tf.int32) #throw label tensor
  return img, label

4. 將TFRecord中的數(shù)據(jù)保存為圖片

filename_queue = tf.train.string_input_producer(["iris_contact.tfrecords"]) 
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)  #return file and file_name
features = tf.parse_single_example(serialized_example,
                  features={
                    'label': tf.FixedLenFeature([], tf.int64),
                    'img_raw' : tf.FixedLenFeature([], tf.string),
                  }) 
image = tf.decode_raw(features['img_raw'], tf.uint8)
image = tf.reshape(image, [512, 80, 3])
label = tf.cast(features['label'], tf.int32)
with tf.Session() as sess: 
  init_op = tf.initialize_all_variables()
  sess.run(init_op)
  coord=tf.train.Coordinator()
  threads= tf.train.start_queue_runners(coord=coord)
  for i in range(20):
    example, l = sess.run([image,label])#take out image and label
    img=Image.fromarray(example, 'RGB')
    img.save(cwd+str(i)+'_''Label_'+str(l)+'.jpg')#save image
    print(example, l)
  coord.request_stop()
  coord.join(threads)

以上就是怎么在Tensorflow中使用tfrecord輸入數(shù)據(jù)格式,小編相信有部分知識點可能是我們日常工作會見到或用到的。希望你能通過這篇文章學到更多知識。更多詳情敬請關注創(chuàng)新互聯(lián)行業(yè)資訊頻道。

當前名稱:怎么在Tensorflow中使用tfrecord輸入數(shù)據(jù)格式-創(chuàng)新互聯(lián)
URL分享:http://chinadenli.net/article2/eddic.html

成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供域名注冊微信小程序小程序開發(fā)網(wǎng)站營銷自適應網(wǎng)站品牌網(wǎng)站建設

廣告

聲明:本網(wǎng)站發(fā)布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯(lián)

綿陽服務器托管