C語言中計(jì)算一個(gè)數(shù)的N次方可以用庫函數(shù)pow來實(shí)現(xiàn)。
創(chuàng)新互聯(lián)公司專注于周至網(wǎng)站建設(shè)服務(wù)及定制,我們擁有豐富的企業(yè)做網(wǎng)站經(jīng)驗(yàn)。 熱誠(chéng)為您提供周至營(yíng)銷型網(wǎng)站建設(shè),周至網(wǎng)站制作、周至網(wǎng)頁設(shè)計(jì)、周至網(wǎng)站官網(wǎng)定制、微信平臺(tái)小程序開發(fā)服務(wù),打造周至網(wǎng)絡(luò)公司原創(chuàng)品牌,更為您提供周至網(wǎng)站排名全網(wǎng)營(yíng)銷落地服務(wù)。
函數(shù)原型:double pow(double x, double y);
功 能:計(jì)算x^y的值
返 回 值:計(jì)算結(jié)果
舉例如下:
double a = pow(3.14, 2); // 計(jì)算3.14的平方
注:使用pow函數(shù)時(shí),需要將頭文件#includemath.h包含進(jìn)源文件中。
double gaussian(double u) //用Box_Muller算法產(chǎn)生高斯分布的隨機(jī)數(shù)
{
double r,t,z,x;
double s1,s2;
s1=(1.0+rand())/(RAND_MAX+1.0);
s2=(1.0+rand())/(RAND_MAX+1.0);
r=sqrt(-2*log(s2)/log(e));
t=2*pi*s1;
z=r*cos(t);
x=u+z*N;
return x;
}
以前寫的一個(gè)函數(shù),u是均值,N是方差
摘要:
隨機(jī)數(shù)在實(shí)際運(yùn)用中非常之多,如游戲設(shè)計(jì),信號(hào)處理,通常我們很容易得到平均分布的隨機(jī)數(shù)。但如何根據(jù)平均分布的隨機(jī)數(shù)進(jìn)而產(chǎn)生其它分布的隨機(jī)數(shù)呢?本文提出了一種基于幾何直觀面積的方法,以正態(tài)分布隨機(jī)數(shù)的產(chǎn)生為例討論了任意分布的隨機(jī)數(shù)的產(chǎn)生方法。
大家都知道,隨機(jī)數(shù)在各個(gè)方面都有很大的作用,在vc的環(huán)境下,為我們提供了庫函數(shù)rand()來產(chǎn)生一個(gè)隨機(jī)的整數(shù)。該隨機(jī)數(shù)是平均在0~RAND_MAX之間平均分布的,RAND_MAX是一個(gè)常量,在VC6.0環(huán)境下是這樣定義的:
#define RAND_MAX 0x7fff
它是一個(gè)short 型數(shù)據(jù)的最大值,如果要產(chǎn)生一個(gè)浮點(diǎn)型的隨機(jī)數(shù),可以將rand()/1000.0這樣就得到一個(gè)0~32.767之間平均分布的隨機(jī)浮點(diǎn)數(shù)。如果要使得范圍大一點(diǎn),那么可以通過產(chǎn)生幾個(gè)隨機(jī)數(shù)的線性組合來實(shí)現(xiàn)任意范圍內(nèi)的平均分布的隨機(jī)數(shù)。例如要產(chǎn)生-1000~1000之間的精度為四位小數(shù)的平均分布的隨機(jī)數(shù)可以這樣來實(shí)現(xiàn)。先產(chǎn)生一個(gè)0到10000之間的隨機(jī)整數(shù)。方法如下 :
int a = rand()%10000;
然后保留四位小數(shù)產(chǎn)生0~1之間的隨機(jī)小數(shù):
double b = (double)a/10000.0;
然后通過線性組合就可以實(shí)現(xiàn)任意范圍內(nèi)的隨機(jī)數(shù)的產(chǎn)生,要實(shí)現(xiàn)-1000~1000內(nèi)的平均分布的隨機(jī)數(shù)可以這樣做:
double dValue = (rand()%10000)/10000.0*1000-(rand()%10000)/10000.0*1000;
則dValue就是所要的值。
到現(xiàn)在為止,你或許以為一切工作都已經(jīng)完成了,其實(shí)不然,仔細(xì)一看,你會(huì)發(fā)現(xiàn)有問題的,上面的式子化簡(jiǎn)后就變?yōu)椋?/p>
double dValue = (rand()%10000)/10.0-(rand()%10000)/10.0;
這樣一來,產(chǎn)生的隨機(jī)數(shù)范圍是正確的,但是精度不正確了,變成了只有一位正確的小數(shù)的隨機(jī)數(shù)了,后面三位的小數(shù)都是零,顯然不是我們要求的,什么原因呢,又怎么辦呢。
先找原因,rand()產(chǎn)生的隨機(jī)數(shù)分辨率為32767,兩個(gè)就是65534,而經(jīng)過求余后分辨度還要減小為10000,兩個(gè)就是20000而要求的分辨率為1000*10000*2=20000000,顯然遠(yuǎn)遠(yuǎn)不夠。下面提供的方法可以實(shí)現(xiàn)正確的結(jié)果:
double a = (rand()%10000) * (rand()%1000)/10000.0;
double b = (rand()%10000) * (rand()%1000)/10000.0;
double dValue = a-b;
則dValue就是所要求的結(jié)果。在下面的函數(shù)中可以實(shí)現(xiàn)產(chǎn)生一個(gè)在一個(gè)區(qū)間之內(nèi)的平均分布的隨機(jī)數(shù),精度是4位小數(shù)。
double AverageRandom(double min,double max)
{
int minInteger = (int)(min*10000);
int maxInteger = (int)(max*10000);
int randInteger = rand()*rand();
int diffInteger = maxInteger - minInteger;
int resultInteger = randInteger % diffInteger + minInteger;
return resultInteger/10000.0;
}
但是有一個(gè)值得注意的問題,隨機(jī)數(shù)的產(chǎn)生需要有一個(gè)隨機(jī)的種子,因?yàn)橛糜?jì)算機(jī)產(chǎn)生的隨機(jī)數(shù)是通過遞推的方法得來的,必須有一個(gè)初始值,也就是通常所說的隨機(jī)種子,如果不對(duì)隨機(jī)種子進(jìn)行初始化,那么計(jì)算機(jī)有一個(gè)確省的隨機(jī)種子,這樣每次遞推的結(jié)果就完全相同了,因此需要在每次程序運(yùn)行時(shí)對(duì)隨機(jī)種子進(jìn)行初始化,在vc中的方法是調(diào)用srand(int)這個(gè)函數(shù),其參數(shù)就是隨機(jī)種子,但是如果給一個(gè)常量,則得到的隨機(jī)序列就完全相同了,因此可以使用系統(tǒng)的時(shí)間來作為隨機(jī)種子,因?yàn)橄到y(tǒng)時(shí)間可以保證它的隨機(jī)性。
調(diào)用方法是srand(GetTickCount()),但是又不能在每次調(diào)用rand()的時(shí)候都用srand(GetTickCount())來初始化,因?yàn)楝F(xiàn)在計(jì)算機(jī)運(yùn)行時(shí)間比較快,當(dāng)連續(xù)調(diào)用rand()時(shí),系統(tǒng)的時(shí)間還沒有更新,所以得到的隨機(jī)種子在一段時(shí)間內(nèi)是完全相同的,因此一般只在進(jìn)行一次大批隨機(jī)數(shù)產(chǎn)生之前進(jìn)行一次隨機(jī)種子的初始化。下面的代碼產(chǎn)生了400個(gè)在-1~1之間的平均分布的隨機(jī)數(shù)。
double dValue[400];
srand(GetTickCount());
for(int i= 0;i 400; i++)
{
double dValue[i] = AverageRandom(-1,1);
}
用boost的random庫方便生成,以下是2個(gè)測(cè)試,分別生成50個(gè)數(shù):
// μ = 30, δ^2 = 4
30.84 30.00 26.61 27.49 31.27
29.74 27.99 29.81 29.73 33.29
32.17 31.37 26.83 28.20 27.99
28.69 34.66 25.44 29.22 24.84
29.39 32.02 32.35 28.28 34.16
27.04 32.02 33.40 31.39 29.08
31.91 29.19 29.14 32.25 27.20
32.16 29.06 27.67 29.26 29.51
28.36 28.65 26.87 27.74 26.56
30.16 31.18 30.57 30.57 33.43
// μ = 30, δ^2 = 100
84.66 61.85 24.17 68.63 2.15
1.30 40.92 72.74 74.83 4.25
39.86 27.06 60.94 50.58 79.35
51.83 86.03 74.75 92.33 70.59
93.43 55.51 57.22 70.48 70.52
1.45 22.55 40.85 33.23 65.39
35.54 89.69 45.87 88.35 40.73
67.31 17.64 23.98 98.43 35.93
97.88 48.95 59.54 13.14 45.79
5.55 8.77 70.31 14.83 82.54
#include iostream
#include boost/random.hpp
using namespace std;
typedef boost::minstd_rand GenType;
typedef boost::normal_distribution NormalDis;
typedef boost::variate_generatorGenType, NormalDis RNG;
void Show(RNG rng)
{
cout.setf(ios_base::fixed);
cout.precision(2);
for(int i = 0; i 50;)
{
double temp = rng();
if(temp = 1 temp = 100)
{
cout temp ' ';
if(++i % 5 == 0)
cout '\n';
}
else
continue;
}
cout endl;
}
int main()
{
GenType gt;
NormalDis dis(30, 2); // μ = 30, δ^2 = 4
RNG rng(gt, dis);
Show(rng);
rng.distribution() = NormalDis(30, 100); // μ = 30, δ^2 = 10000
Show(rng);
}
新聞名稱:c語言中判斷正態(tài)分布函數(shù) c語言 正態(tài)分布
URL鏈接:http://chinadenli.net/article2/dodioic.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供App開發(fā)、全網(wǎng)營(yíng)銷推廣、靜態(tài)網(wǎng)站、域名注冊(cè)、微信公眾號(hào)、標(biāo)簽優(yōu)化
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)