欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

python繪制密度函數(shù) python密度函數(shù)曲線

如何用python求出某已知正態(tài)分布的概率密度

Python正態(tài)分布概率計算方法,喜歡算法的伙伴們可以參考學(xué)習(xí)下。需要用到math模塊。先了解一下這個模塊方法,再來寫代碼會更好上手。

公司主營業(yè)務(wù):成都網(wǎng)站建設(shè)、成都做網(wǎng)站、移動網(wǎng)站開發(fā)等業(yè)務(wù)。幫助企業(yè)客戶真正實(shí)現(xiàn)互聯(lián)網(wǎng)宣傳,提高企業(yè)的競爭能力。創(chuàng)新互聯(lián)建站是一支青春激揚(yáng)、勤奮敬業(yè)、活力青春激揚(yáng)、勤奮敬業(yè)、活力澎湃、和諧高效的團(tuán)隊(duì)。公司秉承以“開放、自由、嚴(yán)謹(jǐn)、自律”為核心的企業(yè)文化,感謝他們對我們的高要求,感謝他們從不同領(lǐng)域給我們帶來的挑戰(zhàn),讓我們激情的團(tuán)隊(duì)有機(jī)會用頭腦與智慧不斷的給客戶帶來驚喜。創(chuàng)新互聯(lián)建站推出政和免費(fèi)做網(wǎng)站回饋大家。

def st_norm(u):

'''標(biāo)準(zhǔn)正態(tài)分布'''

import math

x=abs(u)/math.sqrt(2)

T=(0.0705230784,0.0422820123,0.0092705272,

0.0001520143,0.0002765672,0.0000430638)

E=1-pow((1+sum([a*pow(x,(i+1))

for i,a in enumerate(T)])),-16)

p=0.5-0.5*E if u0 else 0.5+0.5*E

return(p)

def norm(a,sigma,x):

'''一般正態(tài)分布'''

u=(x-a)/sigma

return(st_norm(u))

while 1:

'''輸入一個數(shù)時默認(rèn)為標(biāo)準(zhǔn)正態(tài)分布

輸入三個數(shù)(空格隔開)時分別為期望、方差、x

輸入 stop 停止'''

S=input('please input the parameters:\n')

if S=='stop':break

try:

L=[float(s) for s in S.split()]

except:

print('Input error!')

continue

if len(L)==1:

print('f(x)=%.5f'%st_norm(L[0]))

elif len(L)==3:

print('f(x)=%.5f'%norm(L[0],L[1],L[2]))

else:

print('Input error!')

python 繪制和密度圖筆記

import pandasas pd

import numpyas np

import seabornas sns

import matplotlib.pyplotas plt

pd.set_option('display.max_columns', 10000)

pd.set_option('display.max_rows', 10000000000)

pd.set_option('display.width', 100000)

income = pd.read_excel(r'D:\bigData\0629demo\dataSource\income.xlsx')

fill_data = income.fillna(value={'workclass': income.workclass.mode()[0], 'occupation': income.occupation.mode()[0],

? ? ? ? ? ? ? ? ? ? ? ? ? ? 'native-country': income['native-country'].mode()[0]}, inplace=True)

# print(income.apply(lambda x: np.sum(x.isnull())))

# print(income)

print(income.describe())

print(income.describe(include=['object']))

# 設(shè)置繪圖風(fēng)格

plt.style.use('ggplot')

# 設(shè)置多圖形組合

fig, axes = plt.subplots(2, 1)

# 繪制不同收入水平下的年齡核密度圖

# kind='kde', label='=50K', ax=axes[0], legend=True, linestyle='-'

# kind='kde', label='50K', ax=axes[0], legend=True, linestyle='--'

income['age'][income.income ==' =50K'].plot(kind='kde', ax=axes[0], label='=50K', legend=True, linestyle='-')

income['age'][income.income ==' 50K'].plot(kind='kde', ax=axes[0], label='50K', legend=True, linestyle='--')

# 繪制不同收入水平下的周工作小時數(shù)核密度圖

# kind='kde', label='= 50K', ax=axes[1], legend=True,? linestyle='-'

# kind='kde', label=' 50K', ax=axes[1], legend=True, linestyle='--'

income['hours-per-week'][income.income ==' =50K'].plot(kind='kde', label='= 50K', ax=axes[1], legend=True,

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? linestyle='-')

income['hours-per-week'][income.income ==' 50K'].plot(kind='kde', label=' 50K', ax=axes[1], legend=True,

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? linestyle='--')

plt.show()

# 構(gòu)造不同收入水平下各種族人數(shù)的數(shù)據(jù)

race = pd.DataFrame(income.groupby(by=['race', 'income']).agg(np.size).loc[:, 'age'])

# 重設(shè)行索引

race = race.reset_index()

# 變量重命名

race.rename(columns={'age':'counts'}, inplace=True)

print(race)

# 排序

race.sort_values(by=['race', 'counts'], ascending=False, inplace=True)

# 構(gòu)造不同收入水平下各家庭關(guān)系人數(shù)的數(shù)據(jù)

relationship = pd.DataFrame(income.groupby(by=['relationship', 'income']).agg(np.size).loc[:, 'age'])

relationship = relationship.reset_index()

relationship.rename(columns={'age':'counts'}, inplace=True)

relationship.sort_values(by=['relationship', 'counts'], ascending=False, inplace=True)

plt.figure(figsize=(15, 10))

sns.barplot(x='race', y='counts', hue='income', data=race)

plt.show()

plt.figure(figsize=(15, 10))

sns.barplot(x='relationship', y='counts', hue='income', data=relationship)

plt.show()

如何使用python做統(tǒng)計分析

Shape Parameters

形態(tài)參數(shù)

While a general continuous random variable can be shifted and scaled

with the loc and scale parameters, some distributions require additional

shape parameters. For instance, the gamma distribution, with density

γ(x,a)=λ(λx)a?1Γ(a)e?λx,

requires the shape parameter a. Observe that setting λ can be obtained by setting the scale keyword to 1/λ.

雖然一個一般的連續(xù)隨機(jī)變量可以被位移和伸縮通過loc和scale參數(shù),但一些分布還需要額外的形態(tài)參數(shù)。作為例子,看到這個伽馬分布,這是它的密度函數(shù)

γ(x,a)=λ(λx)a?1Γ(a)e?λx,

要求一個形態(tài)參數(shù)a。注意到λ的設(shè)置可以通過設(shè)置scale關(guān)鍵字為1/λ進(jìn)行。

Let’s check the number and name of the shape parameters of the gamma

distribution. (We know from the above that this should be 1.)

讓我們檢查伽馬分布的形態(tài)參數(shù)的名字的數(shù)量。(我們知道從上面知道其應(yīng)該為1)

from scipy.stats import gamma

gamma.numargs

1

gamma.shapes

'a'

Now we set the value of the shape variable to 1 to obtain the

exponential distribution, so that we compare easily whether we get the

results we expect.

現(xiàn)在我們設(shè)置形態(tài)變量的值為1以變成指數(shù)分布。所以我們可以容易的比較是否得到了我們所期望的結(jié)果。

gamma(1, scale=2.).stats(moments="mv")

(array(2.0), array(4.0))

Notice that we can also specify shape parameters as keywords:

注意我們也可以以關(guān)鍵字的方式指定形態(tài)參數(shù):

gamma(a=1, scale=2.).stats(moments="mv")

(array(2.0), array(4.0))

Freezing a Distribution

凍結(jié)分布

Passing the loc and scale keywords time and again can become quite

bothersome. The concept of freezing a RV is used to solve such problems.

不斷地傳遞loc與scale關(guān)鍵字最終會讓人厭煩。而凍結(jié)RV的概念被用來解決這個問題。

rv = gamma(1, scale=2.)

By using rv we no longer have to include the scale or the shape

parameters anymore. Thus, distributions can be used in one of two ways,

either by passing all distribution parameters to each method call (such

as we did earlier) or by freezing the parameters for the instance of the

distribution. Let us check this:

通過使用rv我們不用再更多的包含scale與形態(tài)參數(shù)在任何情況下。顯然,分布可以被多種方式使用,我們可以通過傳遞所有分布參數(shù)給對方法的每次調(diào)用(像我們之前做的那樣)或者可以對一個分布對象凍結(jié)參數(shù)。讓我們看看是怎么回事:

rv.mean(), rv.std()

(2.0, 2.0)

This is indeed what we should get.

這正是我們應(yīng)該得到的。

Broadcasting

廣播

The basic methods pdf and so on satisfy the usual numpy broadcasting

rules. For example, we can calculate the critical values for the upper

tail of the t distribution for different probabilites and degrees of

freedom.

像pdf這樣的簡單方法滿足numpy的廣播規(guī)則。作為例子,我們可以計算t分布的右尾分布的臨界值對于不同的概率值以及自由度。

stats.t.isf([0.1, 0.05, 0.01], [[10], [11]])

array([[ 1.37218364, 1.81246112, 2.76376946],

[ 1.36343032, 1.79588482, 2.71807918]])

Here, the first row are the critical values for 10 degrees of freedom

and the second row for 11 degrees of freedom (d.o.f.). Thus, the

broadcasting rules give the same result of calling isf twice:

這里,第一行是以10自由度的臨界值,而第二行是以11為自由度的臨界值。所以,廣播規(guī)則與下面調(diào)用了兩次isf產(chǎn)生的結(jié)果相同。

stats.t.isf([0.1, 0.05, 0.01], 10)

array([ 1.37218364, 1.81246112, 2.76376946])

stats.t.isf([0.1, 0.05, 0.01], 11)

array([ 1.36343032, 1.79588482, 2.71807918])

If the array with probabilities, i.e, [0.1, 0.05, 0.01] and the array of

degrees of freedom i.e., [10, 11, 12], have the same array shape, then

element wise matching is used. As an example, we can obtain the 10% tail

for 10 d.o.f., the 5% tail for 11 d.o.f. and the 1% tail for 12 d.o.f.

by calling

但是如果概率數(shù)組,如[0.1,0.05,0.01]與自由度數(shù)組,如[10,11,12]具有相同的數(shù)組形態(tài),則元素對應(yīng)捕捉被作用,我們可以分別得到10%,5%,1%尾的臨界值對于10,11,12的自由度。

stats.t.isf([0.1, 0.05, 0.01], [10, 11, 12])

array([ 1.37218364, 1.79588482, 2.68099799])

Specific Points for Discrete Distributions

離散分布的特殊之處

Discrete distribution have mostly the same basic methods as the

continuous distributions. However pdf is replaced the probability mass

function pmf, no estimation methods, such as fit, are available, and

scale is not a valid keyword parameter. The location parameter, keyword

loc can still be used to shift the distribution.

離散分布的簡單方法大多數(shù)與連續(xù)分布很類似。當(dāng)然像pdf被更換為密度函數(shù)pmf,沒有估計方法,像fit是可用的。而scale不是一個合法的關(guān)鍵字參數(shù)。Location參數(shù),關(guān)鍵字loc則仍然可以使用用于位移。

The computation of the cdf requires some extra attention. In the case of

continuous distribution the cumulative distribution function is in most

standard cases strictly monotonic increasing in the bounds (a,b) and

has therefore a unique inverse. The cdf of a discrete distribution,

however, is a step function, hence the inverse cdf, i.e., the percent

point function, requires a different definition:

ppf(q) = min{x : cdf(x) = q, x integer}

Cdf的計算要求一些額外的關(guān)注。在連續(xù)分布的情況下,累積分布函數(shù)在大多數(shù)標(biāo)準(zhǔn)情況下是嚴(yán)格遞增的,所以有唯一的逆。而cdf在離散分布,無論如何,是階躍函數(shù),所以cdf的逆,分位點(diǎn)函數(shù),要求一個不同的定義:

ppf(q) = min{x : cdf(x) = q, x integer}

For further info, see the docs here.

為了更多信息可以看這里。

We can look at the hypergeometric distribution as an example

from scipy.stats import hypergeom

[M, n, N] = [20, 7, 12]

我們可以看這個超幾何分布的例子

from scipy.stats import hypergeom

[M, n, N] = [20, 7, 12]

If we use the cdf at some integer points and then evaluate the ppf at

those cdf values, we get the initial integers back, for example

如果我們使用在一些整數(shù)點(diǎn)使用cdf,它們的cdf值再作用ppf會回到開始的值。

x = np.arange(4)*2

x

array([0, 2, 4, 6])

prb = hypergeom.cdf(x, M, n, N)

prb

array([ 0.0001031991744066, 0.0521155830753351, 0.6083591331269301,

0.9897832817337386])

hypergeom.ppf(prb, M, n, N)

array([ 0., 2., 4., 6.])

If we use values that are not at the kinks of the cdf step function, we get the next higher integer back:

如果我們使用的值不是cdf的函數(shù)值,則我們得到一個更高的值。

hypergeom.ppf(prb + 1e-8, M, n, N)

array([ 1., 3., 5., 7.])

hypergeom.ppf(prb - 1e-8, M, n, N)

array([ 0., 2., 4., 6.])

統(tǒng)計學(xué)入門級:常見概率分布+python繪制分布圖

如果隨機(jī)變量X的所有取值都可以逐個列舉出來,則稱X為離散型隨機(jī)變量。相應(yīng)的概率分布有二項(xiàng)分布,泊松分布。

如果隨機(jī)變量X的所有取值無法逐個列舉出來,而是取數(shù)軸上某一區(qū)間內(nèi)的任一點(diǎn),則稱X為連續(xù)型隨機(jī)變量。相應(yīng)的概率分布有正態(tài)分布,均勻分布,指數(shù)分布,伽馬分布,偏態(tài)分布,卡方分布,beta分布等。(真多分布,好恐怖~~)

在離散型隨機(jī)變量X的一切可能值中,各可能值與其對應(yīng)概率的乘積之和稱為該隨機(jī)變量X的期望值,記作E(X) 。比如有隨機(jī)變量,取值依次為:2,2,2,4,5。求其平均值:(2+2+2+4+5)/5 = 3。

期望值也就是該隨機(jī)變量總體的均值。 推導(dǎo)過程如下:

= (2+2+2+4+5)/5

= 1/5 2 3 + 4/5 + 5/5

= 3/5 2 + 1/5 4 + 1/5 5

= 0.6 2 + 0.2 4 + 0.2 5

= 60% 2 + 20% 4 + 20%*5

= 1.2 + 0.8 + 1

= 3

倒數(shù)第三步可以解釋為值為2的數(shù)字出現(xiàn)的概率為60%,4的概率為20%,5的概率為20%。 所以E(X) = 60% 2 + 20% 4 + 20%*5 = μ = 3。

0-1分布(兩點(diǎn)分布),它的隨機(jī)變量的取值為1或0。即離散型隨機(jī)變量X的概率分布為:P{X=0} = 1-p, P{X=1} = p,即:

則稱隨機(jī)變量X服從參數(shù)為p的0-1分布,記作X~B(1,p)。

在生活中有很多例子服從兩點(diǎn)分布,比如投資是否中標(biāo),新生嬰兒是男孩還是女孩,檢查產(chǎn)品是否合格等等。

大家非常熟悉的拋硬幣試驗(yàn)對應(yīng)的分布就是二項(xiàng)分布。拋硬幣試驗(yàn)要么出現(xiàn)正面,要么就是反面,只包含這兩個結(jié)果。出現(xiàn)正面的次數(shù)是一個隨機(jī)變量,這種隨機(jī)變量所服從的概率分布通常稱為 二項(xiàng)分布 。

像拋硬幣這類試驗(yàn)所具有的共同性質(zhì)總結(jié)如下:(以拋硬幣為例)

通常稱具有上述特征的n次重復(fù)獨(dú)立試驗(yàn)為n重伯努利試驗(yàn)。簡稱伯努利試驗(yàn)或伯努利試驗(yàn)概型。特別地,當(dāng)試驗(yàn)次數(shù)為1時,二項(xiàng)分布服從0-1分布(兩點(diǎn)分布)。

舉個栗子:拋3次均勻的硬幣,求結(jié)果出現(xiàn)有2個正面的概率 。

已知p = 0.5 (出現(xiàn)正面的概率) ,n = 3 ,k = 2

所以拋3次均勻的硬幣,求結(jié)果出現(xiàn)有2個正面的概率為3/8。

二項(xiàng)分布的期望值和方差 分別為:

泊松分布是用來描述在一 指定時間范圍內(nèi)或在指定的面積或體積之內(nèi)某一事件出現(xiàn)的次數(shù)的分布 。生活中服從泊松分布的例子比如有每天房產(chǎn)中介接待的客戶數(shù),某微博每月出現(xiàn)服務(wù)器癱瘓的次數(shù)等等。 泊松分布的公式為 :

其中 λ 為給定的時間間隔內(nèi)事件的平均數(shù),λ = np。e為一個數(shù)學(xué)常數(shù),一個無限不循環(huán)小數(shù),其值約為2.71828。

泊松分布的期望值和方差 分別為:

使用Python繪制泊松分布的概率分布圖:

因?yàn)檫B續(xù)型隨機(jī)變量可以取某一區(qū)間或整個實(shí)數(shù)軸上的任意一個值,所以通常用一個函數(shù)f(x)來表示連續(xù)型隨機(jī)變量,而f(x)就稱為 概率密度函數(shù) 。

概率密度函數(shù)f(x)具有如下性質(zhì) :

需要注意的是,f(x)不是一個概率,即f(x) ≠ P(X = x) 。在連續(xù)分布的情況下,隨機(jī)變量X在a與b之間的概率可以寫成:

正態(tài)分布(或高斯分布)是連續(xù)型隨機(jī)變量的最重要也是最常見的分布,比如學(xué)生的考試成績就呈現(xiàn)出正態(tài)分布的特征,大部分成績集中在某個范圍(比如60-80分),很小一部分往兩端傾斜(比如50分以下和90多分以上)。還有人的身高等等。

正態(tài)分布的定義 :

如果隨機(jī)變量X的概率密度為( -∞x+∞):

則稱X服從正態(tài)分布,記作X~N(μ,σ2)。其中-∞μ+∞,σ0, μ為隨機(jī)變量X的均值,σ為隨機(jī)變量X的標(biāo)準(zhǔn)差。 正態(tài)分布的分布函數(shù)

正態(tài)分布的圖形特點(diǎn) :

使用Python繪制正態(tài)分布的概率分布圖:

正態(tài)分布有一個3σ準(zhǔn)則,即數(shù)值分布在(μ-σ,μ+σ)中的概率為0.6827,分布在(μ-2σ,μ+2σ)中的概率為0.9545,分布在(μ-3σ,μ+3σ)中的概率為0.9973,也就是說大部分?jǐn)?shù)值是分布在(μ-3σ,μ+3σ)區(qū)間內(nèi),超出這個范圍的可能性很小很小,僅占不到0.3%,屬于極個別的小概率事件,所以3σ準(zhǔn)則可以用來檢測異常值。

當(dāng)μ=0,σ=1時,有

此時的正態(tài)分布N(0,1) 稱為標(biāo)準(zhǔn)正態(tài)分布。因?yàn)棣?,σ都是確定的取值,所以其對應(yīng)的概率密度曲線是一條 形態(tài)固定 的曲線。

對標(biāo)準(zhǔn)正態(tài)分布,通常用φ(x)表示概率密度函數(shù),用Φ(x)表示分布函數(shù):

假設(shè)有一次物理考試特別難,滿分100分,全班只有大概20個人及格。與此同時語文考試很簡單,全班絕大部分都考了90分以上。小明的物理和語文分別考了60分和80分,他回家后告訴家長,這時家長能僅僅從兩科科目的分值直接判斷出這次小明的語文成績要比物理好很多嗎?如果不能,應(yīng)該如何判斷呢?此時Z-score就派上用場了。 Z-Score的計算定義 :

即 將隨機(jī)變量X先減去總體樣本均值,再除以總體樣本標(biāo)準(zhǔn)差就得到標(biāo)準(zhǔn)分?jǐn)?shù)啦。如果X低于平均值,則Z為負(fù)數(shù),反之為正數(shù) 。通過計算標(biāo)準(zhǔn)分?jǐn)?shù),可以將任何一個一般的正態(tài)分布轉(zhuǎn)化為標(biāo)準(zhǔn)正態(tài)分布。

小明家長從老師那得知物理的全班平均成績?yōu)?0分,標(biāo)準(zhǔn)差為10,而語文的平均成績?yōu)?2分,標(biāo)準(zhǔn)差為4。分別計算兩科成績的標(biāo)準(zhǔn)分?jǐn)?shù):

物理:標(biāo)準(zhǔn)分?jǐn)?shù) = (60-40)/10 = 2

語文:標(biāo)準(zhǔn)分?jǐn)?shù) = (85-95)/4 = -2.5

從計算結(jié)果來看,說明這次考試小明的物理成績在全部同學(xué)中算是考得很不錯的,而語文考得很差。

指數(shù)分布可能容易和前面的泊松分布混淆,泊松分布強(qiáng)調(diào)的是某段時間內(nèi)隨機(jī)事件發(fā)生的次數(shù)的概率分布,而指數(shù)分布說的是 隨機(jī)事件發(fā)生的時間間隔 的概率分布。比如一班地鐵進(jìn)站的間隔時間。如果隨機(jī)變量X的概率密度為:

則稱X服從指數(shù)分布,其中的參數(shù)λ0。 對應(yīng)的分布函數(shù) 為:

均勻分布的期望值和方差 分別為:

使用Python繪制指數(shù)分布的概率分布圖:

均勻分布有兩種,分為 離散型均勻分布和連續(xù)型均勻分布 。其中離散型均勻分布最常見的例子就是拋擲骰子啦。拋擲骰子出現(xiàn)的點(diǎn)數(shù)就是一個離散型隨機(jī)變量,點(diǎn)數(shù)可能有1,2,3,4,5,6。每個數(shù)出現(xiàn)的概率都是1/6。

設(shè)連續(xù)型隨機(jī)變量X具有概率密度函數(shù):

則稱X服從區(qū)間(a,b)上的均勻分布。X在等長度的子區(qū)間內(nèi)取值的概率相同。對應(yīng)的分布函數(shù)為:

f(x)和F(x)的圖形分別如下圖所示:

均勻分布的期望值和方差 分別為:

如何在Python中實(shí)現(xiàn)這五類強(qiáng)大的概率分布

舉個例子,一個表示拋硬幣結(jié)果的隨機(jī)變量可以表示成

Python

X = {1 如果正面朝上,

2 如果反面朝上}

隨機(jī)變量是一個變量,它取值于一組可能的值(離散或連續(xù)的),并服從某種隨機(jī)性。隨機(jī)變量的每個可能取值的都與一個概率相關(guān)聯(lián)。隨機(jī)變量的所有可能取值和與之相關(guān)聯(lián)的概率就被稱為概率分布(probability distributrion)。

我鼓勵大家仔細(xì)研究一下scipy.stats模塊。

概率分布有兩種類型:離散(discrete)概率分布和連續(xù)(continuous)概率分布。

離散概率分布也稱為概率質(zhì)量函數(shù)(probability mass function)。離散概率分布的例子有伯努利分布(Bernoulli distribution)、二項(xiàng)分布(binomial distribution)、泊松分布(Poisson distribution)和幾何分布(geometric distribution)等。

連續(xù)概率分布也稱為概率密度函數(shù)(probability density function),它們是具有連續(xù)取值(例如一條實(shí)線上的值)的函數(shù)。正態(tài)分布(normal distribution)、指數(shù)分布(exponential distribution)和β分布(beta distribution)等都屬于連續(xù)概率分布。

python制作分布圖

制作分布圖類似密度圖,在python中利用pandas來提取分布數(shù)據(jù)是比較方便的。主要用到pandas的cut和groupby等函數(shù)。

官方文檔鏈接

主要參數(shù)為x和bins。

x為數(shù)據(jù)源,數(shù)組格式的都支持,list,numpy.narray, pandas.Series。

bins可以為int,也可以為序列。

我們定義bins為一個序列,默認(rèn)為左開右閉的區(qū)間:

對言值列按cats做groupby,然后調(diào)用get_stats統(tǒng)計函數(shù),再用unstack函數(shù)將層次化的行索引“展開”為列。

G2在之前的文章中有介紹,文章 《python結(jié)合G2繪制精美圖形》 。

一句話繪制出來,但具體的區(qū)間段難以區(qū)分出來。

bokeh是python的一個優(yōu)秀的繪圖工具包,與pandas結(jié)合的比較好。 bokeh文檔

作者原文鏈接: python制作分布圖

本文名稱:python繪制密度函數(shù) python密度函數(shù)曲線
轉(zhuǎn)載來于:http://chinadenli.net/article16/dodiggg.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供電子商務(wù)企業(yè)建站品牌網(wǎng)站設(shè)計小程序開發(fā)、網(wǎng)站策劃面包屑導(dǎo)航

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)

h5響應(yīng)式網(wǎng)站建設(shè)