這篇文章主要介紹在python中實(shí)現(xiàn)線性回歸的方法,文中介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們一定要看完!
線性回歸是基本的統(tǒng)計(jì)和機(jī)器學(xué)習(xí)技術(shù)之一。經(jīng)濟(jì),計(jì)算機(jī)科學(xué),社會(huì)科學(xué)等等學(xué)科中,無論是統(tǒng)計(jì)分析,或者是機(jī)器學(xué)習(xí),還是科學(xué)計(jì)算,都有很大的機(jī)會(huì)需要用到線性模型。建議先學(xué)習(xí)它,然后再嘗試更復(fù)雜的方法。
回歸
回歸分析是統(tǒng)計(jì)和機(jī)器學(xué)習(xí)中最重要的領(lǐng)域之一。有許多可用的回歸方法。線性回歸就是其中之一。而線性回歸可能是最重要且使用最廣泛的回歸技術(shù)之一。這是最簡(jiǎn)單的回歸方法之一。它的主要優(yōu)點(diǎn)之一是線性回歸得到的結(jié)果十分容易解釋。那么回歸主要有:
如何在python中實(shí)現(xiàn)線性回歸
用到的packages
NumPy是Python的基礎(chǔ)科學(xué)軟件包,它允許在單維和多維數(shù)組上執(zhí)行許多高性能操作。
scikit-learn是在NumPy和其他一些軟件包的基礎(chǔ)上廣泛使用的Python機(jī)器學(xué)習(xí)庫。它提供了預(yù)處理數(shù)據(jù),減少維數(shù),實(shí)現(xiàn)回歸,分類,聚類等的方法。
如果要實(shí)現(xiàn)線性回歸并且需要功能超出scikit-learn的范圍,則應(yīng)考慮使用statsmodels可以用于估算統(tǒng)計(jì)模型,執(zhí)行測(cè)試等。
scikit-learn的簡(jiǎn)單線性回歸
1.導(dǎo)入用到的packages和類
import numpy as np from sklearn.linear_model import LinearRegression
網(wǎng)站名稱:在python中實(shí)現(xiàn)線性回歸的方法-創(chuàng)新互聯(lián)
轉(zhuǎn)載源于:http://chinadenli.net/article14/deiige.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供用戶體驗(yàn)、微信小程序、網(wǎng)站營(yíng)銷、服務(wù)器托管、ChatGPT、全網(wǎng)營(yíng)銷推廣
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)