欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

nosql數(shù)據(jù)庫劃分方法,nosql數(shù)據(jù)庫的類型

MySQL數(shù)據(jù)庫性能優(yōu)化之分區(qū)分表分庫

分表是分散數(shù)據(jù)庫壓力的好方法。

創(chuàng)新互聯(lián)是一家專業(yè)提供津市企業(yè)網(wǎng)站建設,專注與成都做網(wǎng)站、網(wǎng)站建設、HTML5、小程序制作等業(yè)務。10年已為津市眾多企業(yè)、政府機構等服務。創(chuàng)新互聯(lián)專業(yè)網(wǎng)絡公司優(yōu)惠進行中。

分表,最直白的意思,就是將一個表結構分為多個表,然后,可以再同一個庫里,也可以放到不同的庫。

當然,首先要知道什么情況下,才需要分表。個人覺得單表記錄條數(shù)達到百萬到千萬級別時就要使用分表了。

分表的分類

**1、縱向分表**

將本來可以在同一個表的內容,人為劃分為多個表。(所謂的本來,是指按照關系型數(shù)據(jù)庫的第三范式要求,是應該在同一個表的。)

分表理由:根據(jù)數(shù)據(jù)的活躍度進行分離,(因為不同活躍的數(shù)據(jù),處理方式是不同的)

案例:

對于一個博客系統(tǒng),文章標題,作者,分類,創(chuàng)建時間等,是變化頻率慢,查詢次數(shù)多,而且最好有很好的實時性的數(shù)據(jù),我們把它叫做冷數(shù)據(jù)。而博客的瀏覽量,回復數(shù)等,類似的統(tǒng)計信息,或者別的變化頻率比較高的數(shù)據(jù),我們把它叫做活躍數(shù)據(jù)。所以,在進行數(shù)據(jù)庫結構設計的時候,就應該考慮分表,首先是縱向分表的處理。

這樣縱向分表后:

首先存儲引擎的使用不同,冷數(shù)據(jù)使用MyIsam 可以有更好的查詢數(shù)據(jù)。活躍數(shù)據(jù),可以使用Innodb ,可以有更好的更新速度。

其次,對冷數(shù)據(jù)進行更多的從庫配置,因為更多的操作時查詢,這樣來加快查詢速度。對熱數(shù)據(jù),可以相對有更多的主庫的橫向分表處理。

其實,對于一些特殊的活躍數(shù)據(jù),也可以考慮使用memcache ,redis之類的緩存,等累計到一定量再去更新數(shù)據(jù)庫。或者mongodb 一類的nosql 數(shù)據(jù)庫,這里只是舉例,就先不說這個。

**2、橫向分表**

字面意思,就可以看出來,是把大的表結構,橫向切割為同樣結構的不同表,如,用戶信息表,user_1,user_2等。表結構是完全一樣,但是,根據(jù)某些特定的規(guī)則來劃分的表,如根據(jù)用戶ID來取模劃分。

分表理由:根據(jù)數(shù)據(jù)量的規(guī)模來劃分,保證單表的容量不會太大,從而來保證單表的查詢等處理能力。

案例:同上面的例子,博客系統(tǒng)。當博客的量達到很大時候,就應該采取橫向分割來降低每個單表的壓力,來提升性能。例如博客的冷數(shù)據(jù)表,假如分為100個表,當同時有100萬個用戶在瀏覽時,如果是單表的話,會進行100萬次請求,而現(xiàn)在分表后,就可能是每個表進行1萬個數(shù)據(jù)的請求(因為,不可能絕對的平均,只是假設),這樣壓力就降低了很多很多。

延伸:為什么要分表和分區(qū)?

日常開發(fā)中我們經(jīng)常會遇到大表的情況,所謂的大表是指存儲了百萬級乃至千萬級條記錄的表。這樣的表過于龐大,導致數(shù)據(jù)庫在查詢和插入的時候耗時太長,性能低下,如果涉及聯(lián)合查詢的情況,性能會更加糟糕。分表和表分區(qū)的目的就是減少數(shù)據(jù)庫的負擔,提高數(shù)據(jù)庫的效率,通常點來講就是提高表的增刪改查效率。

什么是分表?

分表是將一個大表按照一定的規(guī)則分解成多張具有獨立存儲空間的實體表,我們可以稱為子表,每個表都對應三個文件,MYD數(shù)據(jù)文件,.MYI索引文件,.frm表結構文件。這些子表可以分布在同一塊磁盤上,也可以在不同的機器上。app讀寫的時候根據(jù)事先定義好的規(guī)則得到對應的子表名,然后去操作它。

什么是分區(qū)?

分區(qū)和分表相似,都是按照規(guī)則分解表。不同在于分表將大表分解為若干個獨立的實體表,而分區(qū)是將數(shù)據(jù)分段劃分在多個位置存放,可以是同一塊磁盤也可以在不同的機器。分區(qū)后,表面上還是一張表,但數(shù)據(jù)散列到多個位置了。app讀寫的時候操作的還是大表名字,db自動去組織分區(qū)的數(shù)據(jù)。

**MySQL分表和分區(qū)有什么聯(lián)系呢?**

1、都能提高mysql的性高,在高并發(fā)狀態(tài)下都有一個良好的表現(xiàn)。

2、分表和分區(qū)不矛盾,可以相互配合的,對于那些大訪問量,并且表數(shù)據(jù)比較多的表,我們可以采取分表和分區(qū)結合的方式(如果merge這種分表方式,不能和分區(qū)配合的話,可以用其他的分表試),訪問量不大,但是表數(shù)據(jù)很多的表,我們可以采取分區(qū)的方式等。

3、分表技術是比較麻煩的,需要手動去創(chuàng)建子表,app服務端讀寫時候需要計算子表名。采用merge好一些,但也要創(chuàng)建子表和配置子表間的union關系。

4、表分區(qū)相對于分表,操作方便,不需要創(chuàng)建子表。

我們知道對于大型的互聯(lián)網(wǎng)應用,數(shù)據(jù)庫單表的數(shù)據(jù)量可能達到千萬甚至上億級別,同時面臨這高并發(fā)的壓力。Master-Slave結構只能對數(shù)據(jù)庫的讀能力進行擴展,寫操作還是集中在Master中,Master并不能無限制的掛接Slave庫,如果需要對數(shù)據(jù)庫的吞吐能力進行進一步的擴展,可以考慮采用分庫分表的策略。

**1、分表**

在分表之前,首先要選中合適的分表策略(以哪個字典為分表字段,需要將數(shù)據(jù)分為多少張表),使數(shù)據(jù)能夠均衡的分布在多張表中,并且不影響正常的查詢。在企業(yè)級應用中,往往使用org_id(組織主鍵)做為分表字段,在互聯(lián)網(wǎng)應用中往往是userid。在確定分表策略后,當數(shù)據(jù)進行存儲及查詢時,需要確定到哪張表里去查找數(shù)據(jù),

數(shù)據(jù)存放的數(shù)據(jù)表 = 分表字段的內容 % 分表數(shù)量

**2、分庫**

分表能夠解決單表數(shù)據(jù)量過大帶來的查詢效率下降的問題,但是不能給數(shù)據(jù)庫的并發(fā)訪問帶來質的提升,面對高并發(fā)的寫訪問,當Master無法承擔高并發(fā)的寫入請求時,不管如何擴展Slave服務器,都沒有意義了。我們通過對數(shù)據(jù)庫進行拆分,來提高數(shù)據(jù)庫的寫入能力,即所謂的分庫。分庫采用對關鍵字取模的方式,對數(shù)據(jù)庫進行路由。

數(shù)據(jù)存放的數(shù)據(jù)庫=分庫字段的內容%數(shù)據(jù)庫的數(shù)量

**3、即分表又分庫**

數(shù)據(jù)庫分表可以解決單表海量數(shù)據(jù)的查詢性能問題,分庫可以解決單臺數(shù)據(jù)庫的并發(fā)訪問壓力問題。

當數(shù)據(jù)庫同時面臨海量數(shù)據(jù)存儲和高并發(fā)訪問的時候,需要同時采取分表和分庫策略。一般分表分庫策略如下:

中間變量 = 關鍵字%(數(shù)據(jù)庫數(shù)量*單庫數(shù)據(jù)表數(shù)量)

庫 = 取整(中間變量/單庫數(shù)據(jù)表數(shù)量)

表 = (中間變量%單庫數(shù)據(jù)表數(shù)量)

實例:

1、分庫分表

很明顯,一個主表(也就是很重要的表,例如用戶表)無限制的增長勢必嚴重影響性能,分庫與分表是一個很不錯的解決途徑,也就是性能優(yōu)化途徑,現(xiàn)在的案例是我們有一個1000多萬條記錄的用戶表members,查詢起來非常之慢,同事的做法是將其散列到100個表中,分別從members0到members99,然后根據(jù)mid分發(fā)記錄到這些表中,牛逼的代碼大概是這樣子:

復制代碼 代碼如下:

?php

for($i=0;$i 100; $i++ ){

//echo "CREATE TABLE db2.members{$i} LIKE db1.members

";

echo "INSERT INTO members{$i} SELECT * FROM members WHERE mid%100={$i}

";

}

?

2、不停機修改mysql表結構

同樣還是members表,前期設計的表結構不盡合理,隨著數(shù)據(jù)庫不斷運行,其冗余數(shù)據(jù)也是增長巨大,同事使用了下面的方法來處理:

先創(chuàng)建一個臨時表:

/*創(chuàng)建臨時表*/

CREATE TABLE members_tmp LIKE members

然后修改members_tmp的表結構為新結構,接著使用上面那個for循環(huán)來導出數(shù)據(jù),因為1000萬的數(shù)據(jù)一次性導出是不對的,mid是主鍵,一個區(qū)間一個區(qū)間的導,基本是一次導出5萬條吧,這里略去了

接著重命名將新表替換上去:

/*這是個頗為經(jīng)典的語句哈*/

RENAME TABLE members TO members_bak,members_tmp TO members;

就是這樣,基本可以做到無損失,無需停機更新表結構,但實際上RENAME期間表是被鎖死的,所以選擇在線少的時候操作是一個技巧。經(jīng)過這個操作,使得原先8G多的表,一下子變成了2G多。

數(shù)據(jù)庫主要分為哪兩種類型?

數(shù)據(jù)庫主要分為關系數(shù)據(jù)庫和非關系型數(shù)據(jù)庫(NoSQL)。

1、關系數(shù)據(jù)庫

關系型數(shù)據(jù)庫,存儲的格式可以直觀地反映實體間的關系。關系型數(shù)據(jù)庫和常見的表格比較相似,關系型數(shù)據(jù)庫中表與表之間是有很多復雜的關聯(lián)關系的。

常見的關系型數(shù)據(jù)庫有Mysql,SqlServer等。在輕量或者小型的應用中,使用不同的關系型數(shù)據(jù)庫對系統(tǒng)的性能影響不大,但是在構建大型應用時,則需要根據(jù)應用的業(yè)務需求和性能需求,選擇合適的關系型數(shù)據(jù)庫。

2、非關系型數(shù)據(jù)庫(NoSQL)

指分布式的、非關系型的、不保證遵循ACID原則的數(shù)據(jù)存儲系統(tǒng)。NoSQL數(shù)據(jù)庫技術與CAP理論、一致性哈希算法有密切關系。NoSQL數(shù)據(jù)庫適合追求速度和可擴展性、業(yè)務多變的應用場景。

擴展資料

關系數(shù)據(jù)庫分為兩類:一類是桌面數(shù)據(jù)庫,例如Access、FoxPro和dBase等;另一類是客戶/服務器數(shù)據(jù)庫,例如SQL Server、Oracle和Sybase等。桌面數(shù)據(jù)庫用于小型的、單機的應用程序,它不需要網(wǎng)絡和服務器,實現(xiàn)起來比較方便,但它只提供數(shù)據(jù)的存取功能。

客戶/服務器數(shù)據(jù)庫主要適用于大型的、多用戶的數(shù)據(jù)庫管理系統(tǒng),應用程序包括兩部分:一部分駐留在客戶機上,用于向用戶顯示信息及實現(xiàn)與用戶的交互;另一部分駐留在服務器中,主要用來實現(xiàn)對數(shù)據(jù)庫的操作和對數(shù)據(jù)的計算處理。

參考資料來源:百度百科-關系數(shù)據(jù)庫

參考資料來源:百度百科-數(shù)據(jù)庫

什么是NoSQL數(shù)據(jù)庫?

2. 什么是NoSQL?

2.1 NoSQL 概述

NoSQL(NoSQL = Not Only SQL ),意即“不僅僅是SQL”,

泛指非關系型的數(shù)據(jù)庫。隨著互聯(lián)網(wǎng)web2.0網(wǎng)站的興起,傳統(tǒng)的關系數(shù)據(jù)庫在應付web2.0網(wǎng)站,特別是超大規(guī)模和高并發(fā)的SNS類型的web2.0純動態(tài)網(wǎng)站已經(jīng)顯得力不從心,暴露了很多難以克服的問題,而非關系型的數(shù)據(jù)庫則由于其本身的特點得到了非常迅速的發(fā)展。NoSQL數(shù)據(jù)庫的產生就是為了解決大規(guī)模數(shù)據(jù)集合多重數(shù)據(jù)種類帶來的挑戰(zhàn),尤其是大數(shù)據(jù)應用難題,包括超大規(guī)模數(shù)據(jù)的存儲。

(例如谷歌或Facebook每天為他們的用戶收集萬億比特的數(shù)據(jù))。這些類型的數(shù)據(jù)存儲不需要固定的模式,無需多余操作就可以橫向擴展。

2.2 NoSQL代表

MongDB、 Redis、Memcache

3. 關系型數(shù)據(jù)庫與NoSQL的區(qū)別?

3.1 RDBMS

高度組織化結構化數(shù)據(jù)

結構化查詢語言(SQL)

數(shù)據(jù)和關系都存儲在單獨的表中。

數(shù)據(jù)操縱語言,數(shù)據(jù)定義語言

嚴格的一致性

基礎事務

ACID

關系型數(shù)據(jù)庫遵循ACID規(guī)則

事務在英文中是transaction,和現(xiàn)實世界中的交易很類似,它有如下四個特性:

A (Atomicity) 原子性

原子性很容易理解,也就是說事務里的所有操作要么全部做完,要么都不做,事務成功的條件是事務里的所有操作都成功,只要有一個操作失敗,整個事務就失敗,需要回滾。比如銀行轉賬,從A賬戶轉100元至B賬戶,分為兩個步驟:1)從A賬戶取100元;2)存入100元至B賬戶。這兩步要么一起完成,要么一起不完成,如果只完成第一步,第二步失敗,錢會莫名其妙少了100元。

C (Consistency) 一致性

一致性也比較容易理解,也就是說數(shù)據(jù)庫要一直處于一致的狀態(tài),事務的運行不會改變數(shù)據(jù)庫原本的一致性約束。

I (Isolation) 獨立性

所謂的獨立性是指并發(fā)的事務之間不會互相影響,如果一個事務要訪問的數(shù)據(jù)正在被另外一個事務修改,只要另外一個事務未提交,它所訪問的數(shù)據(jù)就不受未提交事務的影響。比如現(xiàn)有有個交易是從A賬戶轉100元至B賬戶,在這個交易還未完成的情況下,如果此時B查詢自己的賬戶,是看不到新增加的100元的

D (Durability) 持久性

持久性是指一旦事務提交后,它所做的修改將會永久的保存在數(shù)據(jù)庫上,即使出現(xiàn)宕機也不會丟失。

3.2 NoSQL

代表著不僅僅是SQL

沒有聲明性查詢語言

沒有預定義的模式

鍵 - 值對存儲,列存儲,文檔存儲,圖形數(shù)據(jù)庫

最終一致性,而非ACID屬性

非結構化和不可預知的數(shù)據(jù)

CAP定理

高性能,高可用性和可伸縮性

分布式數(shù)據(jù)庫中的CAP原理(了解)

CAP定理:

Consistency(一致性), 數(shù)據(jù)一致更新,所有數(shù)據(jù)變動都是同步的

Availability(可用性), 好的響應性能

Partition tolerance(分區(qū)容錯性) 可靠性

P: 系統(tǒng)中任意信息的丟失或失敗不會影響系統(tǒng)的繼續(xù)運作。

定理:任何分布式系統(tǒng)只可同時滿足二點,沒法三者兼顧。

CAP理論的核心是:一個分布式系統(tǒng)不可能同時很好的滿足一致性,可用性和分區(qū)容錯性這三個需求,

因此,根據(jù) CAP 原理將 NoSQL 數(shù)據(jù)庫分成了滿足 CA 原則、滿足 CP 原則和滿足 AP 原則三 大類:

CA - 單點集群,滿足一致性,可用性的系統(tǒng),通常在可擴展性上不太強大。

CP - 滿足一致性,分區(qū)容忍性的系統(tǒng),通常性能不是特別高。

AP - 滿足可用性,分區(qū)容忍性的系統(tǒng),通常可能對一致性要求低一些。

CAP理論就是說在分布式存儲系統(tǒng)中,最多只能實現(xiàn)上面的兩點。

而由于當前的網(wǎng)絡硬件肯定會出現(xiàn)延遲丟包等問題,所以分區(qū)容忍性是我們必須需要實現(xiàn)的。

所以我們只能在一致性和可用性之間進行權衡,沒有NoSQL系統(tǒng)能同時保證這三點。

說明:C:強一致性 A:高可用性 P:分布式容忍性

舉例:

CA:傳統(tǒng)Oracle數(shù)據(jù)庫

AP:大多數(shù)網(wǎng)站架構的選擇

CP:Redis、Mongodb

注意:分布式架構的時候必須做出取舍。

一致性和可用性之間取一個平衡。多余大多數(shù)web應用,其實并不需要強一致性。

因此犧牲C換取P,這是目前分布式數(shù)據(jù)庫產品的方向。

4. 當下NoSQL的經(jīng)典應用

當下的應用是 SQL 與 NoSQL 一起使用的。

代表項目:阿里巴巴商品信息的存放。

去 IOE 化。

ps:I 是指 IBM 的小型機,很貴的,好像好幾萬一臺;O 是指 Oracle 數(shù)據(jù)庫,也很貴的,好幾萬呢;M 是指 EMC 的存儲設備,也很貴的。

難點:

數(shù)據(jù)類型多樣性。

數(shù)據(jù)源多樣性和變化重構。

數(shù)據(jù)源改造而服務平臺不需要大面積重構。

nosql數(shù)據(jù)庫的四種類型

nosql數(shù)據(jù)庫的四種類型如下:

1.key-value鍵值存儲數(shù)據(jù)庫:

相關產品: Redis、Riak、SimpleDB、Chordless、Scalaris、Memcached.

主要應用: 內容緩存,處理大量數(shù)據(jù)的高負載訪問,也用于系統(tǒng)日志。

優(yōu)點:查找速度快,大量操作時性能高。

2.列存儲數(shù)據(jù)庫:

相關產品: BigTable、HBase、Cassandra、HadoopDB、GreenPlum、PNUTS.

主要應用: 分布式數(shù)據(jù)的儲存與管理。

優(yōu)點:查找速度快,可擴展性強,容易進行分布式擴展。

缺點:功能相對局限。

3.文檔型數(shù)據(jù)庫

相關產品:MongoDB、CouchDB、ThruDB、CloudKit、Perservere、Jackrabbit.

主要應用: web應用,管理面向文檔的數(shù)據(jù)或者類似的半結構化數(shù)據(jù)。

優(yōu)點:數(shù)據(jù)結構靈活,表結構可變,復雜性低。

缺點:查詢效率低,且缺乏統(tǒng)一的查詢語言。

4.Graph圖形數(shù)據(jù)庫

相關產品: Neo4J、OrientDB、InfoGrid、GraphDB.

主要應用: 復雜,互連接,低結構化的圖結構場合, 專注構建關系圖譜。

優(yōu)點: 利用圖結構相關算法, 可用于構建復雜的關系圖譜。

缺點: 復雜度高。

網(wǎng)站欄目:nosql數(shù)據(jù)庫劃分方法,nosql數(shù)據(jù)庫的類型
標題來源:http://chinadenli.net/article13/dsispgs.html

成都網(wǎng)站建設公司_創(chuàng)新互聯(lián),為您提供企業(yè)建站標簽優(yōu)化面包屑導航手機網(wǎng)站建設小程序開發(fā)搜索引擎優(yōu)化

廣告

聲明:本網(wǎng)站發(fā)布的內容(圖片、視頻和文字)以用戶投稿、用戶轉載內容為主,如果涉及侵權請盡快告知,我們將會在第一時間刪除。文章觀點不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內容未經(jīng)允許不得轉載,或轉載時需注明來源: 創(chuàng)新互聯(lián)

手機網(wǎng)站建設