在函數(shù)擬合中,如果用p表示函數(shù)中需要確定的參數(shù),那么目標(biāo)就是找到一組p,使得下面函數(shù)S的值最小:

創(chuàng)新互聯(lián)公司長期為千余家客戶提供的網(wǎng)站建設(shè)服務(wù),團(tuán)隊從業(yè)經(jīng)驗(yàn)10年,關(guān)注不同地域、不同群體,并針對不同對象提供差異化的產(chǎn)品和服務(wù);打造開放共贏平臺,與合作伙伴共同營造健康的互聯(lián)網(wǎng)生態(tài)環(huán)境。為鎮(zhèn)坪企業(yè)提供專業(yè)的網(wǎng)站設(shè)計、網(wǎng)站建設(shè),鎮(zhèn)坪網(wǎng)站改版等技術(shù)服務(wù)。擁有十多年豐富建站經(jīng)驗(yàn)和眾多成功案例,為您定制開發(fā)。
這種算法稱為最小二乘法擬合。Python的Scipy數(shù)值計算庫中的optimize模塊提供了 leastsq() 函數(shù),可以對數(shù)據(jù)進(jìn)行最小二乘擬合計算。
此處利用該函數(shù)對一段弧線使用圓方程進(jìn)行了擬合,并通過Matplotlib模塊進(jìn)行了作圖,程序內(nèi)容如下:
Python的使用中需要導(dǎo)入相應(yīng)的模塊,此處首先用 import 語句
分別導(dǎo)入了numpy, leastsq與pylab模塊,其中numpy模塊常用用與數(shù)組類型的建立,讀入等過程。leastsq則為最小二乘法擬合函數(shù)。pylab是繪圖模塊。
接下來我們需要讀入需要進(jìn)行擬合的數(shù)據(jù),這里使用了 numpy.loadtxt() 函數(shù):
其參數(shù)有:
進(jìn)行擬合時,首先我們需要定義一個目標(biāo)函數(shù)。對于圓的方程,我們需要圓心坐標(biāo)(a,b)以及半徑r三個參數(shù),方便起見用p來存儲:
緊接著就可以進(jìn)行擬合了, leastsq() 函數(shù)需要至少提供擬合的函數(shù)名與參數(shù)的初始值:
返回的結(jié)果為一數(shù)組,分別為擬合得到的參數(shù)與其誤差值等,這里只取擬合參數(shù)值。
leastsq() 的參數(shù)具體有:
輸出選項有:
最后我們可以將原數(shù)據(jù)與擬合結(jié)果一同做成線狀圖,可采用 pylab.plot() 函數(shù):
pylab.plot() 函數(shù)需提供兩列數(shù)組作為輸入,其他參數(shù)可調(diào)控線條顏色,形狀,粗細(xì)以及對應(yīng)名稱等性質(zhì)。視需求而定,此處不做詳解。
pylab.legend() 函數(shù)可以調(diào)控圖像標(biāo)簽的位置,有無邊框等性質(zhì)。
pylab.annotate() 函數(shù)設(shè)置注釋,需至少提供注釋內(nèi)容與放置位置坐標(biāo)的參數(shù)。
pylab.show() 函數(shù)用于顯示圖像。
最終結(jié)果如下圖所示:
用Python作科學(xué)計算
numpy.loadtxt
scipy.optimize.leastsq
參考代碼
% 生成測試數(shù)據(jù)
a0=1;a1=2;a2=3;
x1=rand(10,10);
x2=rand(10,10);
Y=a0+a1*x1+a2*x2;
% 加入隨機(jī)噪聲
Y=Y+0.1*randn(size(y));
% 擬合函數(shù)形式
f=@(k,x)k(1)+k(2)*x(:,1)+k(3)*x(:,2);
x = [x1(:) x2(:)];
k=lsqcurvefit(f,[1 1 1 1],x,Y(:))
n = size(x,1);
plot(1:n,Y(:),'bo',1:n,f(k,x),'r:.')
運(yùn)行結(jié)果
k =
1.0309 1.9782 2.9800
分別對應(yīng)a0~a2,可見與原始系數(shù)比較吻合。
很多業(yè)務(wù)場景中,我們希望通過一個特定的函數(shù)來擬合業(yè)務(wù)數(shù)據(jù),以此來預(yù)測未來數(shù)據(jù)的變化趨勢。(比如用戶的留存變化、付費(fèi)變化等)
本文主要介紹在 Python 中常用的兩種曲線擬合方法:多項式擬合 和 自定義函數(shù)擬合。
通過多項式擬合,我們只需要指定想要擬合的多項式的最高項次是多少即可。
運(yùn)行結(jié)果:
對于自定義函數(shù)擬合,不僅可以用于直線、二次曲線、三次曲線的擬合,它可以適用于任意形式的曲線的擬合,只要定義好合適的曲線方程即可。
運(yùn)行結(jié)果:
分享題目:python二元函數(shù)擬合,python多元擬合
本文路徑:http://chinadenli.net/article11/dsicggd.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站策劃、響應(yīng)式網(wǎng)站、標(biāo)簽優(yōu)化、網(wǎng)站設(shè)計、面包屑導(dǎo)航、云服務(wù)器
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)