本質(zhì)是因?yàn)椋弘S著互聯(lián)網(wǎng)的進(jìn)一步發(fā)展與各行業(yè)信息化建設(shè)進(jìn)程加快、參與者的增多,人們對(duì)軟件有了更多更新的要求,需要軟件不僅能實(shí)現(xiàn)功能,而且要求保證許多人可以共同參與使用,因而軟件所需承載的數(shù)據(jù)量和吞吐量必須達(dá)到相應(yīng)的需求。而目前的關(guān)系型數(shù)據(jù)庫(kù)在某些方面有一些缺點(diǎn),導(dǎo)致不能滿足需要。

成都創(chuàng)新互聯(lián)公司不只是一家網(wǎng)站建設(shè)的網(wǎng)絡(luò)公司;我們對(duì)營(yíng)銷、技術(shù)、服務(wù)都有自己獨(dú)特見(jiàn)解,公司采取“創(chuàng)意+綜合+營(yíng)銷”一體化的方式為您提供更專業(yè)的服務(wù)!我們經(jīng)歷的每一步也許不一定是最完美的,但每一步都有值得深思的意義。我們珍視每一份信任,關(guān)注我們的成都做網(wǎng)站、成都網(wǎng)站設(shè)計(jì)質(zhì)量和服務(wù)品質(zhì),在得到用戶滿意的同時(shí),也能得到同行業(yè)的專業(yè)認(rèn)可,能夠?yàn)樾袠I(yè)創(chuàng)新發(fā)展助力。未來(lái)將繼續(xù)專注于技術(shù)創(chuàng)新,服務(wù)升級(jí),滿足企業(yè)一站式全網(wǎng)營(yíng)銷推廣需求,讓再小的品牌網(wǎng)站建設(shè)也能產(chǎn)生價(jià)值!
具體則需要對(duì)比關(guān)系型數(shù)據(jù)庫(kù)與Nosql之間的區(qū)別可以得出
關(guān)系型數(shù)據(jù)庫(kù)
關(guān)系型數(shù)據(jù)庫(kù)把所有的數(shù)據(jù)都通過(guò)行和列的二元表現(xiàn)形式表示出來(lái)。
關(guān)系型數(shù)據(jù)庫(kù)的優(yōu)勢(shì):
1.?保持?jǐn)?shù)據(jù)的一致性(事務(wù)處理)
2.由于以標(biāo)準(zhǔn)化為前提,數(shù)據(jù)更新的開(kāi)銷很小(相同的字段基本上都只有一處)
3.?可以進(jìn)行Join等復(fù)雜查詢
其中能夠保持?jǐn)?shù)據(jù)的一致性是關(guān)系型數(shù)據(jù)庫(kù)的最大優(yōu)勢(shì)。
關(guān)系型數(shù)據(jù)庫(kù)的不足:
不擅長(zhǎng)的處理
1.?大量數(shù)據(jù)的寫入處理(這點(diǎn)尤為重要)
2.?為有數(shù)據(jù)更新的表做索引或表結(jié)構(gòu)(schema)變更
3.?字段不固定時(shí)應(yīng)用
4.?對(duì)簡(jiǎn)單查詢需要快速返回結(jié)果的處理
--大量數(shù)據(jù)的寫入處理
讀寫集中在一個(gè)數(shù)據(jù)庫(kù)上讓數(shù)據(jù)庫(kù)不堪重負(fù),大部分網(wǎng)站已使用主從復(fù)制技術(shù)實(shí)現(xiàn)讀寫分離,以提高讀寫性能和讀庫(kù)的可擴(kuò)展性。
所以在進(jìn)行大量數(shù)據(jù)操作時(shí),會(huì)使用數(shù)據(jù)庫(kù)主從模式。數(shù)據(jù)的寫入由主數(shù)據(jù)庫(kù)負(fù)責(zé),數(shù)據(jù)的讀入由從數(shù)據(jù)庫(kù)負(fù)責(zé),可以比較簡(jiǎn)單地通過(guò)增加從數(shù)據(jù)庫(kù)來(lái)實(shí)現(xiàn)規(guī)模化,但是數(shù)據(jù)的寫入?yún)s完全沒(méi)有簡(jiǎn)單的方法來(lái)解決規(guī)模化問(wèn)題。
第一,要想將數(shù)據(jù)的寫入規(guī)模化,可以考慮把主數(shù)據(jù)庫(kù)從一臺(tái)增加到兩臺(tái),作為互相關(guān)聯(lián)復(fù)制的二元主數(shù)據(jù)庫(kù)使用,確實(shí)這樣可以把每臺(tái)主數(shù)據(jù)庫(kù)的負(fù)荷減少一半,但是更新處理會(huì)發(fā)生沖突,可能會(huì)造成數(shù)據(jù)的不一致,為了避免這樣的問(wèn)題,需要把對(duì)每個(gè)表的請(qǐng)求分別分配給合適的主數(shù)據(jù)庫(kù)來(lái)處理。
第二,可以考慮把數(shù)據(jù)庫(kù)分割開(kāi)來(lái),分別放在不同的數(shù)據(jù)庫(kù)服務(wù)器上,比如將不同的表放在不同的數(shù)據(jù)庫(kù)服務(wù)器上,數(shù)據(jù)庫(kù)分割可以減少每臺(tái)數(shù)據(jù)庫(kù)服務(wù)器上的數(shù)據(jù)量,以便減少硬盤IO的輸入、輸出處理,實(shí)現(xiàn)內(nèi)存上的高速處理。但是由于分別存儲(chǔ)字不同服務(wù)器上的表之間無(wú)法進(jìn)行Join處理,數(shù)據(jù)庫(kù)分割的時(shí)候就需要預(yù)先考慮這些問(wèn)題,數(shù)據(jù)庫(kù)分割之后,如果一定要進(jìn)行Join處理,就必須要在程序中進(jìn)行關(guān)聯(lián),這是非常困難的。
--為有數(shù)據(jù)更新的表做索引或表結(jié)構(gòu)變更
在使用關(guān)系型數(shù)據(jù)庫(kù)時(shí),為了加快查詢速度需要?jiǎng)?chuàng)建索引,為了增加必要的字段就一定要改變表結(jié)構(gòu),為了進(jìn)行這些處理,需要對(duì)表進(jìn)行共享鎖定,這期間數(shù)據(jù)變更、更新、插入、刪除等都是無(wú)法進(jìn)行的。如果需要進(jìn)行一些耗時(shí)操作,例如為數(shù)據(jù)量比較大的表創(chuàng)建索引或是變更其表結(jié)構(gòu),就需要特別注意,長(zhǎng)時(shí)間內(nèi)數(shù)據(jù)可能無(wú)法進(jìn)行更新。
--字段不固定時(shí)的應(yīng)用
如果字段不固定,利用關(guān)系型數(shù)據(jù)庫(kù)也是比較困難的,有人會(huì)說(shuō),需要的時(shí)候加個(gè)字段就可以了,這樣的方法也不是不可以,但在實(shí)際運(yùn)用中每次都進(jìn)行反復(fù)的表結(jié)構(gòu)變更是非常痛苦的。你也可以預(yù)先設(shè)定大量的預(yù)備字段,但這樣的話,時(shí)間一長(zhǎng)很容易弄不清除字段和數(shù)據(jù)的對(duì)應(yīng)狀態(tài),即哪個(gè)字段保存有哪些數(shù)據(jù)。
--對(duì)簡(jiǎn)單查詢需要快速返回結(jié)果的處理? (這里的“簡(jiǎn)單”指的是沒(méi)有復(fù)雜的查詢條件)
這一點(diǎn)稱不上是缺點(diǎn),但不管怎樣,關(guān)系型數(shù)據(jù)庫(kù)并不擅長(zhǎng)對(duì)簡(jiǎn)單的查詢快速返回結(jié)果,因?yàn)殛P(guān)系型數(shù)據(jù)庫(kù)是使用專門的sql語(yǔ)言進(jìn)行數(shù)據(jù)讀取的,它需要對(duì)sql與越南進(jìn)行解析,同時(shí)還有對(duì)表的鎖定和解鎖等這樣的額外開(kāi)銷,這里并不是說(shuō)關(guān)系型數(shù)據(jù)庫(kù)的速度太慢,而只是想告訴大家若希望對(duì)簡(jiǎn)單查詢進(jìn)行高速處理,則沒(méi)有必要非使用關(guān)系型數(shù)據(jù)庫(kù)不可。
NoSQL數(shù)據(jù)庫(kù)
關(guān)系型數(shù)據(jù)庫(kù)應(yīng)用廣泛,能進(jìn)行事務(wù)處理和表連接等復(fù)雜查詢。相對(duì)地,NoSQL數(shù)據(jù)庫(kù)只應(yīng)用在特定領(lǐng)域,基本上不進(jìn)行復(fù)雜的處理,但它恰恰彌補(bǔ)了之前所列舉的關(guān)系型數(shù)據(jù)庫(kù)的不足之處。
優(yōu)點(diǎn):
易于數(shù)據(jù)的分散
各個(gè)數(shù)據(jù)之間存在關(guān)聯(lián)是關(guān)系型數(shù)據(jù)庫(kù)得名的主要原因,為了進(jìn)行join處理,關(guān)系型數(shù)據(jù)庫(kù)不得不把數(shù)據(jù)存儲(chǔ)在同一個(gè)服務(wù)器內(nèi),這不利于數(shù)據(jù)的分散,這也是關(guān)系型數(shù)據(jù)庫(kù)并不擅長(zhǎng)大數(shù)據(jù)量的寫入處理的原因。相反NoSQL數(shù)據(jù)庫(kù)原本就不支持Join處理,各個(gè)數(shù)據(jù)都是獨(dú)立設(shè)計(jì)的,很容易把數(shù)據(jù)分散在多個(gè)服務(wù)器上,故減少了每個(gè)服務(wù)器上的數(shù)據(jù)量,即使要處理大量數(shù)據(jù)的寫入,也變得更加容易,數(shù)據(jù)的讀入操作當(dāng)然也同樣容易。
典型的NoSQL數(shù)據(jù)庫(kù)
臨時(shí)性鍵值存儲(chǔ)(memcached、Redis)、永久性鍵值存儲(chǔ)(ROMA、Redis)、面向文檔的數(shù)據(jù)庫(kù)(MongoDB、CouchDB)、面向列的數(shù)據(jù)庫(kù)(Cassandra、HBase)
一、 鍵值存儲(chǔ)
它的數(shù)據(jù)是以鍵值的形式存儲(chǔ)的,雖然它的速度非常快,但基本上只能通過(guò)鍵的完全一致查詢獲取數(shù)據(jù),根據(jù)數(shù)據(jù)的保存方式可以分為臨時(shí)性、永久性和兩者兼具 三種。
(1)臨時(shí)性
所謂臨時(shí)性就是數(shù)據(jù)有可能丟失,memcached把所有數(shù)據(jù)都保存在內(nèi)存中,這樣保存和讀取的速度非常快,但是當(dāng)memcached停止時(shí),數(shù)據(jù)就不存在了。由于數(shù)據(jù)保存在內(nèi)存中,所以無(wú)法操作超出內(nèi)存容量的數(shù)據(jù),舊數(shù)據(jù)會(huì)丟失。總結(jié)來(lái)說(shuō):
。在內(nèi)存中保存數(shù)據(jù)
。可以進(jìn)行非常快速的保存和讀取處理
。數(shù)據(jù)有可能丟失
(2)永久性
所謂永久性就是數(shù)據(jù)不會(huì)丟失,這里的鍵值存儲(chǔ)是把數(shù)據(jù)保存在硬盤上,與臨時(shí)性比起來(lái),由于必然要發(fā)生對(duì)硬盤的IO操作,所以性能上還是有差距的,但數(shù)據(jù)不會(huì)丟失是它最大的優(yōu)勢(shì)。總結(jié)來(lái)說(shuō):
。在硬盤上保存數(shù)據(jù)
。可以進(jìn)行非常快速的保存和讀取處理(但無(wú)法與memcached相比)
。數(shù)據(jù)不會(huì)丟失
(3) 兩者兼?zhèn)?/p>
Redis屬于這種類型。Redis有些特殊,臨時(shí)性和永久性兼具。Redis首先把數(shù)據(jù)保存在內(nèi)存中,在滿足特定條件(默認(rèn)是?15分鐘一次以上,5分鐘內(nèi)10個(gè)以上,1分鐘內(nèi)10000個(gè)以上的鍵發(fā)生變更)的時(shí)候?qū)?shù)據(jù)寫入到硬盤中,這樣既確保了內(nèi)存中數(shù)據(jù)的處理速度,又可以通過(guò)寫入硬盤來(lái)保證數(shù)據(jù)的永久性,這種類型的數(shù)據(jù)庫(kù)特別適合處理數(shù)組類型的數(shù)據(jù)。總結(jié)來(lái)說(shuō):
。同時(shí)在內(nèi)存和硬盤上保存數(shù)據(jù)
。可以進(jìn)行非常快速的保存和讀取處理
。保存在硬盤上的數(shù)據(jù)不會(huì)消失(可以恢復(fù))
。適合于處理數(shù)組類型的數(shù)據(jù)
二、面向文檔的數(shù)據(jù)庫(kù)
MongoDB、CouchDB屬于這種類型,它們屬于NoSQL數(shù)據(jù)庫(kù),但與鍵值存儲(chǔ)相異。
(1)不定義表結(jié)構(gòu)
即使不定義表結(jié)構(gòu),也可以像定義了表結(jié)構(gòu)一樣使用,還省去了變更表結(jié)構(gòu)的麻煩。
(2)可以使用復(fù)雜的查詢條件
跟鍵值存儲(chǔ)不同的是,面向文檔的數(shù)據(jù)庫(kù)可以通過(guò)復(fù)雜的查詢條件來(lái)獲取數(shù)據(jù),雖然不具備事務(wù)處理和Join這些關(guān)系型數(shù)據(jù)庫(kù)所具有的處理能力,但初次以外的其他處理基本上都能實(shí)現(xiàn)。
三、?面向列的數(shù)據(jù)庫(kù)
Cassandra、HBae、HyperTable屬于這種類型,由于近年來(lái)數(shù)據(jù)量出現(xiàn)爆發(fā)性增長(zhǎng),這種類型的NoSQL數(shù)據(jù)庫(kù)尤其引入注目。
普通的關(guān)系型數(shù)據(jù)庫(kù)都是以行為單位來(lái)存儲(chǔ)數(shù)據(jù)的,擅長(zhǎng)以行為單位的讀入處理,比如特定條件數(shù)據(jù)的獲取。因此,關(guān)系型數(shù)據(jù)庫(kù)也被成為面向行的數(shù)據(jù)庫(kù)。相反,面向列的數(shù)據(jù)庫(kù)是以列為單位來(lái)存儲(chǔ)數(shù)據(jù)的,擅長(zhǎng)以列為單位讀入數(shù)據(jù)。
面向列的數(shù)據(jù)庫(kù)具有搞擴(kuò)展性,即使數(shù)據(jù)增加也不會(huì)降低相應(yīng)的處理速度(特別是寫入速度),所以它主要應(yīng)用于需要處理大量數(shù)據(jù)的情況。另外,把它作為批處理程序的存儲(chǔ)器來(lái)對(duì)大量數(shù)據(jù)進(jìn)行更新也是非常有用的。但由于面向列的數(shù)據(jù)庫(kù)跟現(xiàn)行數(shù)據(jù)庫(kù)存儲(chǔ)的思維方式有很大不同,故應(yīng)用起來(lái)十分困難。
總結(jié):關(guān)系型數(shù)據(jù)庫(kù)與NoSQL數(shù)據(jù)庫(kù)并非對(duì)立而是互補(bǔ)的關(guān)系,即通常情況下使用關(guān)系型數(shù)據(jù)庫(kù),在適合使用NoSQL的時(shí)候使用NoSQL數(shù)據(jù)庫(kù),讓NoSQL數(shù)據(jù)庫(kù)對(duì)關(guān)系型數(shù)據(jù)庫(kù)的不足進(jìn)行彌補(bǔ)。
NewSQL是對(duì)一類現(xiàn)代關(guān)系型數(shù)據(jù)庫(kù)的統(tǒng)稱,這類數(shù)據(jù)庫(kù)對(duì)于一般的OLTP讀寫請(qǐng)求提供可橫向擴(kuò)展的性能,同時(shí)支持事務(wù)的ACID保證。這些系統(tǒng)既擁有NoSQL數(shù)據(jù)庫(kù)的擴(kuò)展性,又保持傳統(tǒng)數(shù)據(jù)庫(kù)的事務(wù)特性。NewSQL重新將“應(yīng)用程序邏輯與數(shù)據(jù)操作邏輯應(yīng)該分離”的理念帶回到現(xiàn)代數(shù)據(jù)庫(kù)的世界,這也驗(yàn)證了歷史的發(fā)展總是呈現(xiàn)出螺旋上升的形式。
在21世紀(jì)00年代中,出現(xiàn)了許多數(shù)據(jù)倉(cāng)庫(kù)系統(tǒng) (如 Vertica,Greeplum 和AsterData),這些以處理OLAP 請(qǐng)求為設(shè)計(jì)目標(biāo)的系統(tǒng)并不在本文定義的NewSQL范圍內(nèi)。OLAP 數(shù)據(jù)庫(kù)更關(guān)注針對(duì)海量數(shù)據(jù)的大型、復(fù)雜、只讀的查詢,查詢時(shí)間可能持續(xù)秒級(jí)、分鐘級(jí)甚至更長(zhǎng)。
NoSQL的擁躉普遍認(rèn)為阻礙傳統(tǒng)數(shù)據(jù)庫(kù)橫向擴(kuò)容、提高可用性的原因在于ACID保證和關(guān)系模型,因此NoSQL運(yùn)動(dòng)的核心就是放棄事務(wù)強(qiáng)一致性以及關(guān)系模型,擁抱最終一致性和其它數(shù)據(jù)模型?(如 key/value,graphs 和Documents)。
兩個(gè)最著名的NoSQL數(shù)據(jù)庫(kù)就是Google的BigTable和Amazon的Dynamo,由于二者都未開(kāi)源,其它組織就開(kāi)始推出類似的開(kāi)源替代項(xiàng)目,包括Facebook的 Cassandra (基于BigTable和Dynamo)、PowerSet的 Hbase(基于BigTable)。有一些創(chuàng)業(yè)公司也加入到這場(chǎng)NoSQL運(yùn)動(dòng)中,它們不一定是受BigTable和Dynamo的啟發(fā),但都響應(yīng)了NoSQL的哲學(xué),其中最出名的就是MongoDB。
在21世紀(jì)00年代末,市面上已經(jīng)有許多供用戶選擇的分布式數(shù)據(jù)庫(kù)產(chǎn)品。使用NoSQL的優(yōu)勢(shì)在于應(yīng)用開(kāi)發(fā)者可以更關(guān)注應(yīng)用邏輯本身,而非數(shù)據(jù)庫(kù)的擴(kuò)展性問(wèn)題;但與此同時(shí)許多應(yīng)用,如金融系統(tǒng)、訂單處理系統(tǒng),由于無(wú)法放棄事務(wù)的一致性要求被拒之門外。
一些組織,如Google,已經(jīng)發(fā)現(xiàn)他們的許多工程師將過(guò)多的精力放在處理數(shù)據(jù)一致性上,這既暴露了數(shù)據(jù)庫(kù)的抽象、又提高了代碼的復(fù)雜度,這時(shí)候要么選擇回到傳統(tǒng)DBMS時(shí)代,用更高的機(jī)器配置縱向擴(kuò)容,要么選擇回到中間件時(shí)代,開(kāi)發(fā)支持分布式事務(wù)的中間件。這兩種方案成本都很高,于是NewSQL運(yùn)動(dòng)開(kāi)始醞釀。
NewSQL數(shù)據(jù)庫(kù)設(shè)計(jì)針對(duì)的讀寫事務(wù)有以下特點(diǎn):
1、耗時(shí)短。
2、使用索引查詢,涉及少量數(shù)據(jù)。
3、重復(fù)度高,通常使用相同的查詢語(yǔ)句和不同的查詢參考。
也有一些學(xué)者認(rèn)為NewSQL系統(tǒng)是特指實(shí)現(xiàn)上使用Lock-free并發(fā)控制技術(shù)和share-nothing架構(gòu)的數(shù)據(jù)庫(kù)。所有我們認(rèn)為是NewSQL的數(shù)據(jù)庫(kù)系統(tǒng)確實(shí)都有這樣的特點(diǎn)。
NoSQL 數(shù)據(jù)庫(kù)因其功能性、易于開(kāi)發(fā)性和可擴(kuò)展性而廣受認(rèn)可,它們?cè)絹?lái)越多地用于大數(shù)據(jù)和實(shí)時(shí) Web 應(yīng)用程序,在本文中,我們通過(guò)示例討論 NoSQL、何時(shí)使用 NoSQL 與 SQL 及其用例。
NoSQL是一種下一代數(shù)據(jù)庫(kù)管理系統(tǒng) (DBMS)。NoSQL 數(shù)據(jù)庫(kù)具有靈活的模式,可用于構(gòu)建具有大量數(shù)據(jù)和高負(fù)載的現(xiàn)代應(yīng)用程序。
“NoSQL”一詞最初是由 Carlo Strozzi 在 1998 年創(chuàng)造的,盡管自 1960 年代后期以來(lái)就已經(jīng)存在類似的數(shù)據(jù)庫(kù)。然而,NoSQL 的發(fā)展始于 2009 年初,并且發(fā)展迅速。
在處理大量數(shù)據(jù)時(shí),任何關(guān)系數(shù)據(jù)庫(kù)管理系統(tǒng) (RDBMS) 的響應(yīng)時(shí)間都會(huì)變慢。為了解決這個(gè)問(wèn)題,我們可以通過(guò)升級(jí)現(xiàn)有硬件來(lái)“擴(kuò)大”信息系統(tǒng),這非常昂貴。但是,NoSQL 可以更好地橫向擴(kuò)展并且更具成本效益。
NoSQL 對(duì)于非結(jié)構(gòu)化或非常大的數(shù)據(jù)對(duì)象(例如聊天日志數(shù)據(jù)、視頻或圖像)非常有用,這就是為什么 NoSQL 在微軟、谷歌、亞馬遜、Meta (Facebook) 等互聯(lián)網(wǎng)巨頭中特別受歡迎的原因。
一些流行的 NoSQL 數(shù)據(jù)庫(kù)包括:
隨著企業(yè)更快地積累更大的數(shù)據(jù)集,結(jié)構(gòu)化數(shù)據(jù)和關(guān)系模式并不總是適合。有必要使用非結(jié)構(gòu)化數(shù)據(jù)和大型對(duì)象來(lái)更好地捕獲這些信息。
傳統(tǒng)的 RDBMS 使用 SQL(結(jié)構(gòu)化查詢語(yǔ)言)語(yǔ)法來(lái)存儲(chǔ)和檢索結(jié)構(gòu)化數(shù)據(jù),相反,NoSQL 數(shù)據(jù)庫(kù)包含廣泛的功能,可以存儲(chǔ)和檢索結(jié)構(gòu)化、半結(jié)構(gòu)化、非結(jié)構(gòu)化和多態(tài)數(shù)據(jù)。
有時(shí),NoSQL 也被稱為“ 不僅僅是 SQL ”,強(qiáng)調(diào)它可能支持類似 SQL 的語(yǔ)言或與 SQL 數(shù)據(jù)庫(kù)并列。SQL 和 NoSQL DBMS 之間的一個(gè)區(qū)別是 JOIN 功能。SQL 數(shù)據(jù)庫(kù)使用 JOIN 子句來(lái)組合來(lái)自兩個(gè)或多個(gè)表的行,因?yàn)?NoSQL 數(shù)據(jù)庫(kù)本質(zhì)上不是表格的,所以這個(gè)功能并不總是可行或相關(guān)的。
但是,一些 NoSQL DBMS 可以執(zhí)行類似于 JOIN的操作——就像 MongoDB 一樣。這并不意味著不再需要 SQL DBMS,相反,NoSQL 和 SQL 數(shù)據(jù)庫(kù)傾向于以不同的方式解決類似的問(wèn)題。
一般來(lái)說(shuō),在以下情況下,NoSQL 比 SQL 更可取:
許多行業(yè)都在采用 NoSQL,取代關(guān)系數(shù)據(jù)庫(kù),從而為某些業(yè)務(wù)應(yīng)用程序提供更高的靈活性和可擴(kuò)展性,下面給出了 NoSQL 數(shù)據(jù)庫(kù)的一些企業(yè)用例。
內(nèi)容管理是一組用于收集、管理、傳遞、檢索和發(fā)布任何格式的信息的過(guò)程,包括文本、圖像、音頻和視頻。NoSQL 數(shù)據(jù)庫(kù)可以通過(guò)其靈活和開(kāi)放的數(shù)據(jù)模型為存儲(chǔ)多媒體內(nèi)容提供更好的選擇。
例如,福布斯在短短幾個(gè)月內(nèi)就構(gòu)建了一個(gè)基于 MongoDB 的定制內(nèi)容管理系統(tǒng),以更低的成本為他們提供了更大的敏捷性。
大數(shù)據(jù)是指太大而無(wú)法通過(guò)傳統(tǒng)處理系統(tǒng)處理的數(shù)據(jù)集,實(shí)時(shí)存儲(chǔ)和檢索大數(shù)據(jù)的系統(tǒng)在分析 歷史 數(shù)據(jù)的同時(shí)使用流處理來(lái)攝取新數(shù)據(jù),這是一系列非常適合 NoSQL 數(shù)據(jù)庫(kù)的功能。
Zoom使用 DynamoDB(按需模式)使其數(shù)據(jù)能夠在沒(méi)有性能問(wèn)題的情況下進(jìn)行擴(kuò)展,即使該服務(wù)在 COVID-19 大流行的早期使用量激增。
物聯(lián)網(wǎng)設(shè)備具有連接到互聯(lián)網(wǎng)或通信網(wǎng)絡(luò)的嵌入式軟件和傳感器,能夠在無(wú)需人工干預(yù)的情況下收集和共享數(shù)據(jù)。隨著數(shù)十億臺(tái)設(shè)備生成數(shù)不清的數(shù)據(jù),IoT NoSQL 數(shù)據(jù)庫(kù)為 IoT 服務(wù)提供商提供了可擴(kuò)展性和更靈活的架構(gòu)。
Freshub就是這樣的一項(xiàng)服務(wù),它從 MySQL 切換到 MongoDB,以更好地處理其大型、動(dòng)態(tài)、非統(tǒng)一的數(shù)據(jù)集。
擁有數(shù)十億智能手機(jī)用戶,可擴(kuò)展性正成為在移動(dòng)設(shè)備上提供服務(wù)的企業(yè)面臨的最大挑戰(zhàn)。具有更靈活數(shù)據(jù)模型的 NoSQL DBMS 通常是完美的解決方案。
例如,The Weather Channel使用 MongoDB 數(shù)據(jù)庫(kù)每分鐘處理數(shù)百萬(wàn)個(gè)請(qǐng)求,同時(shí)還處理用戶數(shù)據(jù)并提供天氣更新。
特點(diǎn):
它們可以處理超大量的數(shù)據(jù)。
它們運(yùn)行在便宜的PC服務(wù)器集群上。
PC集群擴(kuò)充起來(lái)非常方便并且成本很低,避免了“sharding”操作的復(fù)雜性和成本。
它們擊碎了性能瓶頸。
NoSQL的支持者稱,通過(guò)NoSQL架構(gòu)可以省去將Web或Java應(yīng)用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時(shí)間,執(zhí)行速度變得更快。
“SQL并非適用于所有的程序代碼,” 對(duì)于那些繁重的重復(fù)操作的數(shù)據(jù),SQL值得花錢。但是當(dāng)數(shù)據(jù)庫(kù)結(jié)構(gòu)非常簡(jiǎn)單時(shí),SQL可能沒(méi)有太大用處。
沒(méi)有過(guò)多的操作。
雖然NoSQL的支持者也承認(rèn)關(guān)系數(shù)據(jù)庫(kù)提供了無(wú)可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對(duì)穩(wěn)定,他們同時(shí)也表示,企業(yè)的具體需求可能沒(méi)有那么多。
Bootstrap支持
因?yàn)镹oSQL項(xiàng)目都是開(kāi)源的,因此它們?nèi)狈?yīng)商提供的正式支持。這一點(diǎn)它們與大多數(shù)開(kāi)源項(xiàng)目一樣,不得不從社區(qū)中尋求支持。
優(yōu)點(diǎn):
易擴(kuò)展
NoSQL數(shù)據(jù)庫(kù)種類繁多,但是一個(gè)共同的特點(diǎn)都是去掉關(guān)系數(shù)據(jù)庫(kù)的關(guān)系型特性。數(shù)據(jù)之間無(wú)關(guān)系,這樣就非常容易擴(kuò)展。也無(wú)形之間,在架構(gòu)的層面上帶來(lái)了可擴(kuò)展的能力。
大數(shù)據(jù)量,高性能
NoSQL數(shù)據(jù)庫(kù)都具有非常高的讀寫性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無(wú)關(guān)系性,數(shù)據(jù)庫(kù)的結(jié)構(gòu)簡(jiǎn)單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對(duì)web2.0的交互頻繁的應(yīng)用,Cache性能不高。而NoSQL的 Cache是記錄級(jí)的,是一種細(xì)粒度的Cache,所以NoSQL在這個(gè)層面上來(lái)說(shuō)就要性能高很多了。
靈活的數(shù)據(jù)模型
NoSQL無(wú)需事先為要存儲(chǔ)的數(shù)據(jù)建立字段,隨時(shí)可以存儲(chǔ)自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫(kù)里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡(jiǎn)直就是一個(gè)噩夢(mèng)。這點(diǎn)在大數(shù)據(jù)量的web2.0時(shí)代尤其明顯。
高可用
NoSQL在不太影響性能的情況,就可以方便的實(shí)現(xiàn)高可用的架構(gòu)。比如Cassandra,HBase模型,通過(guò)復(fù)制模型也能實(shí)現(xiàn)高可用。
主要應(yīng)用:
Apache HBase
這個(gè)大數(shù)據(jù)管理平臺(tái)建立在谷歌強(qiáng)大的BigTable管理引擎基礎(chǔ)上。作為具有開(kāi)源、Java編碼、分布式多個(gè)優(yōu)勢(shì)的數(shù)據(jù)庫(kù),Hbase最初被設(shè)計(jì)應(yīng)用于Hadoop平臺(tái),而這一強(qiáng)大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺(tái)的龐大數(shù)據(jù)。
Apache Storm
用于處理高速、大型數(shù)據(jù)流的分布式實(shí)時(shí)計(jì)算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實(shí)時(shí)數(shù)據(jù)處理功能,同時(shí)還增加了低延遲的儀表板、安全警報(bào),改進(jìn)了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機(jī)會(huì)、發(fā)展新業(yè)務(wù)。
Apache Spark
該技術(shù)采用內(nèi)存計(jì)算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復(fù)查詢,此外還融合數(shù)據(jù)倉(cāng)庫(kù)、流處理和圖計(jì)算等多種計(jì)算范式,Spark用Scala語(yǔ)言實(shí)現(xiàn),構(gòu)建在HDFS上,能與Hadoop很好的結(jié)合,而且運(yùn)行速度比MapReduce快100倍。
Apache Hadoop
該技術(shù)迅速成為了大數(shù)據(jù)管理標(biāo)準(zhǔn)之一。當(dāng)它被用來(lái)管理大型數(shù)據(jù)集時(shí),對(duì)于復(fù)雜的分布式應(yīng)用,Hadoop體現(xiàn)出了非常好的性能,平臺(tái)的靈活性使它可以運(yùn)行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構(gòu)化、半結(jié)構(gòu)化和甚至非結(jié)構(gòu)化數(shù)據(jù)集。
Apache Drill
你有多大的數(shù)據(jù)集?其實(shí)無(wú)論你有多大的數(shù)據(jù)集,Drill都能輕松應(yīng)對(duì)。通過(guò)支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺(tái),允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。
Apache Sqoop
也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個(gè)問(wèn)題。這一平臺(tái)采用并發(fā)連接,可以將數(shù)據(jù)從關(guān)系數(shù)據(jù)庫(kù)系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類型以及元數(shù)據(jù)傳播的映射。事實(shí)上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導(dǎo)入到HDFS、Hive和Hbase中。
Apache Giraph
這是功能強(qiáng)大的圖形處理平臺(tái),具有很好可擴(kuò)展性和可用性。該技術(shù)已經(jīng)被Facebook采用,Giraph可以運(yùn)行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過(guò)這種方式,你可以得到強(qiáng)大的分布式作圖能力,同時(shí)還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。
Cloudera Impala
Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢。該技術(shù)和MapReduce一樣,具有強(qiáng)大的批處理能力,而且Impala對(duì)于實(shí)時(shí)的SQL查詢也有很好的效果,通過(guò)高效的SQL查詢,你可以很快的了解到大數(shù)據(jù)平臺(tái)上的數(shù)據(jù)。
Gephi
它可以用來(lái)對(duì)信息進(jìn)行關(guān)聯(lián)和量化處理,通過(guò)為數(shù)據(jù)創(chuàng)建功能強(qiáng)大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個(gè)圖表類型,而且可以在具有上百萬(wàn)個(gè)節(jié)點(diǎn)的大型網(wǎng)絡(luò)上運(yùn)行。Gephi具有活躍的用戶社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對(duì)復(fù)雜的IT連接、分布式系統(tǒng)中各個(gè)節(jié)點(diǎn)、數(shù)據(jù)流等信息進(jìn)行可視化分析。
MongoDB
這個(gè)堅(jiān)實(shí)的平臺(tái)一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術(shù)已經(jīng)被廣泛的應(yīng)用于大數(shù)據(jù)管理。MongoDB是一個(gè)應(yīng)用開(kāi)源技術(shù)開(kāi)發(fā)的NoSQL數(shù)據(jù)庫(kù),可以用于在JSON這樣的平臺(tái)上存儲(chǔ)和處理數(shù)據(jù)。目前,紐約時(shí)報(bào)、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務(wù)器也作為一個(gè)參考)。
十大頂尖公司:
Amazon Web Services
Forrester將AWS稱為“云霸主”,談到云計(jì)算領(lǐng)域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術(shù)來(lái)提供大數(shù)據(jù)管理服務(wù),但它不是純開(kāi)源Hadoop,經(jīng)過(guò)修改后現(xiàn)在被專門用在AWS云上。
Forrester稱EMR有很好的市場(chǎng)前景。很多公司基于EMR為客戶提供服務(wù),有一些公司將EMR應(yīng)用于數(shù)據(jù)查詢、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱未來(lái)EMR可以基于工作量的需要自動(dòng)縮放調(diào)整大小。亞馬遜計(jì)劃為其產(chǎn)品和服務(wù)提供更強(qiáng)大的EMR支持,包括它的RedShift數(shù)據(jù)倉(cāng)庫(kù)、新公布的Kenesis實(shí)時(shí)處理引擎以及計(jì)劃中的NoSQL數(shù)據(jù)庫(kù)和商業(yè)智能工具。不過(guò)AWS還沒(méi)有自己的Hadoop發(fā)行版。
Cloudera
Cloudera有開(kāi)源Hadoop的發(fā)行版,這個(gè)發(fā)行版采用了Apache Hadoop開(kāi)源項(xiàng)目的很多技術(shù),不過(guò)基于這些技術(shù)的發(fā)行版也有很大的進(jìn)步。Cloudera為它的Hadoop發(fā)行版開(kāi)發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開(kāi)源Hadoop,但也不是純開(kāi)源的產(chǎn)品。當(dāng)Cloudera的客戶需要Hadoop不具備的某些功能時(shí),Cloudera的工程師們就會(huì)實(shí)現(xiàn)這些功能,或者找一個(gè)擁有這項(xiàng)技術(shù)的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因?yàn)槠淇蓪?shí)現(xiàn)快速創(chuàng)新并積極滿足客戶需求,這一點(diǎn)使它不同于其他那些供應(yīng)商。”目前,Cloudera的平臺(tái)已經(jīng)擁有200多個(gè)付費(fèi)客戶,一些客戶在Cloudera的技術(shù)支持下已經(jīng)可以跨1000多個(gè)節(jié)點(diǎn)實(shí)現(xiàn)對(duì)PB級(jí)數(shù)據(jù)的有效管理。
Hortonworks
和Cloudera一樣,Hortonworks是一個(gè)純粹的Hadoop技術(shù)公司。與Cloudera不同的是,Hortonworks堅(jiān)信開(kāi)源Hadoop比任何其他供應(yīng)商的Hadoop發(fā)行版都要強(qiáng)大。Hortonworks的目標(biāo)是建立Hadoop生態(tài)圈和Hadoop用戶社區(qū),推進(jìn)開(kāi)源項(xiàng)目的發(fā)展。Hortonworks平臺(tái)和開(kāi)源Hadoop聯(lián)系緊密,公司管理人員表示這會(huì)給用戶帶來(lái)好處,因?yàn)樗梢苑乐贡还?yīng)商套牢(如果Hortonworks的客戶想要離開(kāi)這個(gè)平臺(tái),他們可以輕松轉(zhuǎn)向其他開(kāi)源平臺(tái))。這并不是說(shuō)Hortonworks完全依賴開(kāi)源Hadoop技術(shù),而是因?yàn)樵摴緦⑵渌虚_(kāi)發(fā)的成果回報(bào)給了開(kāi)源社區(qū),比如Ambari,這個(gè)工具就是由Hortonworks開(kāi)發(fā)而成,用來(lái)填充集群管理項(xiàng)目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應(yīng)商的支持。
IBM
當(dāng)企業(yè)考慮一些大的IT項(xiàng)目時(shí),很多人首先會(huì)想到IBM。IBM是Hadoop項(xiàng)目的主要參與者之一,F(xiàn)orrester稱IBM已有100多個(gè)Hadoop部署,它的很多客戶都有PB級(jí)的數(shù)據(jù)。IBM在網(wǎng)格計(jì)算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項(xiàng)目實(shí)施等眾多領(lǐng)域有著豐富的經(jīng)驗(yàn)。“IBM計(jì)劃繼續(xù)整合SPSS分析、高性能計(jì)算、BI工具、數(shù)據(jù)管理和建模、應(yīng)對(duì)高性能計(jì)算的工作負(fù)載管理等眾多技術(shù)。”
Intel
和AWS類似,英特爾不斷改進(jìn)和優(yōu)化Hadoop使其運(yùn)行在自己的硬件上,具體來(lái)說(shuō),就是讓Hadoop運(yùn)行在其至強(qiáng)芯片上,幫助用戶打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個(gè)產(chǎn)品,所以公司在未來(lái)還有很多改進(jìn)的可能,英特爾和微軟都被認(rèn)為是Hadoop市場(chǎng)上的潛力股。
MapR Technologies
MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過(guò)很多人可能都沒(méi)有聽(tīng)說(shuō)過(guò)。Forrester對(duì)Hadoop用戶的調(diào)查顯示,MapR的評(píng)級(jí)最高,其發(fā)行版在架構(gòu)和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡(luò)文件系統(tǒng)(NFS)、災(zāi)難恢復(fù)以及高可用性功能。Forrester說(shuō)MapR在Hadoop市場(chǎng)上沒(méi)有Cloudera和Hortonworks那樣的知名度,MapR要成為一個(gè)真正的大企業(yè),還需要加強(qiáng)伙伴關(guān)系和市場(chǎng)營(yíng)銷。
Microsoft
微軟在開(kāi)源軟件問(wèn)題上一直很低調(diào),但在大數(shù)據(jù)形勢(shì)下,它不得不考慮讓W(xué)indows也兼容Hadoop,它還積極投入到開(kāi)源項(xiàng)目中,以更廣泛地推動(dòng)Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務(wù)基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。
微軟也有一些其他的項(xiàng)目,包括名為Polybase的項(xiàng)目,讓Hadoop查詢實(shí)現(xiàn)了SQLServer查詢的一些功能。Forrester說(shuō):“微軟在數(shù)據(jù)庫(kù)、數(shù)據(jù)倉(cāng)庫(kù)、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開(kāi)發(fā)工具市場(chǎng)上有很大優(yōu)勢(shì),而且微軟擁有龐大的用戶群,但要在Hadoop這個(gè)領(lǐng)域成為行業(yè)領(lǐng)導(dǎo)者還有很遠(yuǎn)的路要走。”
Pivotal Software
EMC和Vmware部分大數(shù)據(jù)業(yè)務(wù)分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構(gòu)建一個(gè)性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開(kāi)源Hadoop的基礎(chǔ)上又添加了一些新的工具,包括一個(gè)名為HAWQ的SQL引擎以及一個(gè)專門解決大數(shù)據(jù)問(wèn)題的Hadoop應(yīng)用。Forrester稱Pivotal Hadoop平臺(tái)的優(yōu)勢(shì)在于它整合了Pivotal、EMC、Vmware的眾多技術(shù),Pivotal的真正優(yōu)勢(shì)實(shí)際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶還不到100個(gè),而且大多是中小型客戶。
Teradata
對(duì)于Teradata來(lái)說(shuō),Hadoop既是一種威脅也是一種機(jī)遇。數(shù)據(jù)管理,特別是關(guān)于SQL和關(guān)系數(shù)據(jù)庫(kù)這一領(lǐng)域是Teradata的專長(zhǎng)。所以像Hadoop這樣的NoSQL平臺(tái)崛起可能會(huì)威脅到Teradata。相反,Teradata接受了Hadoop,通過(guò)與Hortonworks合作,Teradata在Hadoop平臺(tái)集成了SQL技術(shù),這使Teradata的客戶可以在Hadoop平臺(tái)上方便地使用存儲(chǔ)在Teradata數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)。
AMPLab
通過(guò)將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔ⅲ覀儾趴梢岳斫馐澜纾@也正是AMPLab所做的。AMPLab致力于機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘、數(shù)據(jù)庫(kù)、信息檢索、自然語(yǔ)言處理和語(yǔ)音識(shí)別等多個(gè)領(lǐng)域,努力改進(jìn)對(duì)信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術(shù)。除了Spark,開(kāi)源分布式SQL查詢引擎Shark也源于AMPLab,Shark具有極高的查詢效率,具有良好的兼容性和可擴(kuò)展性。近幾年的發(fā)展使計(jì)算機(jī)科學(xué)進(jìn)入到全新的時(shí)代,而AMPLab為我們?cè)O(shè)想一個(gè)運(yùn)用大數(shù)據(jù)、云計(jì)算、通信等各種資源和技術(shù)靈活解決難題的方案,以應(yīng)對(duì)越來(lái)越復(fù)雜的各種難題。
一、概念
SQL?(Structured?Query?Language)?數(shù)據(jù)庫(kù),指關(guān)系型數(shù)據(jù)庫(kù)。主要代表:SQL?Server,Oracle,MySQL(開(kāi)源),PostgreSQL(開(kāi)源)。
NoSQL(Not?Only?SQL)泛指非關(guān)系型數(shù)據(jù)庫(kù)。主要代表:MongoDB,Redis,CouchDB。
二、區(qū)別
1、存儲(chǔ)方式
SQL數(shù)據(jù)存在特定結(jié)構(gòu)的表中;而NoSQL則更加靈活和可擴(kuò)展,存儲(chǔ)方式可以省是JSON文檔、哈希表或者其他方式。SQL通常以數(shù)據(jù)庫(kù)表形式存儲(chǔ)數(shù)據(jù)。舉個(gè)栗子,存?zhèn)€學(xué)生借書數(shù)據(jù):
而NoSQL存儲(chǔ)方式比較靈活,比如使用類JSON文件存儲(chǔ)上表中熊大的借閱數(shù)據(jù):
2、表/數(shù)據(jù)集合的數(shù)據(jù)的關(guān)系
在SQL中,必須定義好表和字段結(jié)構(gòu)后才能添加數(shù)據(jù),例如定義表的主鍵(primary?key),索引(index),觸發(fā)器(trigger),存儲(chǔ)過(guò)程(stored?procedure)等。表結(jié)構(gòu)可以在被定義之后更新,但是如果有比較大的結(jié)構(gòu)變更的話就會(huì)變得比較復(fù)雜。在NoSQL中,數(shù)據(jù)可以在任何時(shí)候任何地方添加,不需要先定義表。例如下面這段代碼會(huì)自動(dòng)創(chuàng)建一個(gè)新的"借閱表"數(shù)據(jù)集合:
NoSQL也可以在數(shù)據(jù)集中建立索引。以MongoDB為例,會(huì)自動(dòng)在數(shù)據(jù)集合創(chuàng)建后創(chuàng)建唯一值_id字段,這樣的話就可以在數(shù)據(jù)集創(chuàng)建后增加索引。
從這點(diǎn)來(lái)看,NoSQL可能更加適合初始化數(shù)據(jù)還不明確或者未定的項(xiàng)目中。
3、外部數(shù)據(jù)存儲(chǔ)
SQL中如何需要增加外部關(guān)聯(lián)數(shù)據(jù)的話,規(guī)范化做法是在原表中增加一個(gè)外鍵,關(guān)聯(lián)外部數(shù)據(jù)表。例如需要在借閱表中增加審核人信息,先建立一個(gè)審核人表:
再在原來(lái)的借閱人表中增加審核人外鍵:
這樣如果我們需要更新審核人個(gè)人信息的時(shí)候只需要更新審核人表而不需要對(duì)借閱人表做更新。而在NoSQL中除了這種規(guī)范化的外部數(shù)據(jù)表做法以外,我們還能用如下的非規(guī)范化方式把外部數(shù)據(jù)直接放到原數(shù)據(jù)集中,以提高查詢效率。缺點(diǎn)也比較明顯,更新審核人數(shù)據(jù)的時(shí)候?qū)?huì)比較麻煩。
4、SQL中的JOIN查詢
SQL中可以使用JOIN表鏈接方式將多個(gè)關(guān)系數(shù)據(jù)表中的數(shù)據(jù)用一條簡(jiǎn)單的查詢語(yǔ)句查詢出來(lái)。NoSQL暫未提供類似JOIN的查詢方式對(duì)多個(gè)數(shù)據(jù)集中的數(shù)據(jù)做查詢。所以大部分NoSQL使用非規(guī)范化的數(shù)據(jù)存儲(chǔ)方式存儲(chǔ)數(shù)據(jù)。
5、數(shù)據(jù)耦合性
SQL中不允許刪除已經(jīng)被使用的外部數(shù)據(jù),例如審核人表中的"熊三"已經(jīng)被分配給了借閱人熊大,那么在審核人表中將不允許刪除熊三這條數(shù)據(jù),以保證數(shù)據(jù)完整性。而NoSQL中則沒(méi)有這種強(qiáng)耦合的概念,可以隨時(shí)刪除任何數(shù)據(jù)。
6、事務(wù)
SQL中如果多張表數(shù)據(jù)需要同批次被更新,即如果其中一張表更新失敗的話其他表也不能更新成功。這種場(chǎng)景可以通過(guò)事務(wù)來(lái)控制,可以在所有命令完成后再統(tǒng)一提交事務(wù)。而NoSQL中沒(méi)有事務(wù)這個(gè)概念,每一個(gè)數(shù)據(jù)集的操作都是原子級(jí)的。
7、增刪改查語(yǔ)法
8、查詢性能
在相同水平的系統(tǒng)設(shè)計(jì)的前提下,因?yàn)镹oSQL中省略了JOIN查詢的消耗,故理論上性能上是優(yōu)于SQL的。
如何玩轉(zhuǎn) NoSQL數(shù)據(jù)庫(kù)?作者:IT專家網(wǎng)
Weather公司CIO Bryson Koehler整理出了MongoDB,Riak和Cassandra等NoSQL數(shù)據(jù)庫(kù)的特性。他指出這其中最重要的特性是“NoSQL不會(huì)限制住你”。
Weather公司,致力于天氣報(bào)告和天氣預(yù)報(bào)業(yè)務(wù),其并不缺乏數(shù)據(jù),當(dāng)然也不缺乏數(shù)據(jù)管理工具。但它為什么需要三種不同的NoSQL數(shù)據(jù)庫(kù)?
最近,我向Weather 公司的CIO Bryson Koehler提出了這個(gè)疑問(wèn),除了公司的CIO,Bryson Koehler還是其他很多業(yè)務(wù)單元的孵化者,包括Weather Channel,WeatherFX,Weather Underground,和Intellicast等。Weather公司每天獲取和處理著約20萬(wàn)億字節(jié)數(shù)據(jù),對(duì)外提供當(dāng)前全球天氣狀況,并為航空公司,緊急服務(wù),貨運(yùn)商,公用事業(yè),保險(xiǎn),以及在線天氣網(wǎng)站和天氣應(yīng)用程序的用戶提供天氣預(yù)報(bào)服務(wù)。每天需求增加了數(shù)十億的天氣數(shù)據(jù)請(qǐng)求,并且預(yù)期響應(yīng)時(shí)間要在10毫秒左右。
Riak是Weather 公司的后臺(tái)NoSQL數(shù)據(jù)庫(kù),服務(wù)于公司的事務(wù)性存儲(chǔ)公用網(wǎng)絡(luò)(SUN)數(shù)據(jù)獲取平臺(tái),它運(yùn)行在多個(gè)亞馬遜網(wǎng)絡(luò)服務(wù)(AWS)的可用區(qū)域上,并以每小時(shí)15次的頻率捕獲超過(guò)20億氣象數(shù)據(jù)信息,。所以,Riak具有明確的處理規(guī)模,但該公司也使用Cassandra以及新近添加的MongoDB數(shù)據(jù)庫(kù),為Weather.com 上IOS和Android移動(dòng)應(yīng)用程序服務(wù)。
Weather 公司使用了不同的產(chǎn)品,Koehler解釋說(shuō),因?yàn)椤安煌墓ぞ哂胁煌膬?yōu)勢(shì)。
Cassandra,它服務(wù)于Weather 公司以及全球消費(fèi)者使用的第三方天氣應(yīng)用的API數(shù)據(jù):“我們的數(shù)據(jù)分發(fā)平臺(tái)每秒處理數(shù)十萬(wàn)的事務(wù),我們發(fā)現(xiàn)Cassandra在用于全球分發(fā)數(shù)據(jù)上是一個(gè)很棒的解決方案,并且在[數(shù)據(jù)庫(kù)]讀取方面體現(xiàn)出很高的可用性 “。它本質(zhì)上為全球各地消費(fèi)者所使用的數(shù)據(jù)服務(wù),包括Weather 公司和第三方的天氣應(yīng)用程序。
MongoDB,它提供了Weather.com網(wǎng)站和移動(dòng)應(yīng)用程序的中間層緩存功能:“離開(kāi)我們的核心API,我們還沒(méi)有全部Weather.com內(nèi)容,所以MongoDB是容器和分發(fā)站,為Weather.com以及Android和iOS上的移動(dòng)應(yīng)用程序服務(wù)。Mongo有很多好處,這些好處基于其內(nèi)建的JSON格式以及靈活性上。“
Riak,用于消費(fèi)氣象數(shù)據(jù)和觀測(cè),包括來(lái)自世界各地的圖片和視頻等:“我們喜愛(ài)Riak因其優(yōu)秀的數(shù)據(jù)攝取能力,而且是以一種全球分布式的方式來(lái)實(shí)現(xiàn)。這對(duì)于從全球分布式平臺(tái)上獲取數(shù)據(jù)的入站式數(shù)據(jù)庫(kù)是一個(gè)真正可靠的選擇。
我曾聽(tīng)說(shuō)Datastax,Basho和Couchbase的高管貶低MongoDB的可擴(kuò)展性,但MongoDB指向大規(guī)模部署,在Facebook對(duì)超過(guò)200萬(wàn)臺(tái)移動(dòng)設(shè)備上應(yīng)用程序提供支持,在eHarmony公司,MongDB每天處理著數(shù)十億的潛在比賽預(yù)約。據(jù)Koehle所述,MongoDB為Weather.com和Weather.com移動(dòng)應(yīng)用程序處理著“每天十億交易”,“毫無(wú)疑問(wèn),你可以通過(guò)配置和部署Mongo來(lái)處理大批量的交易數(shù)據(jù)。”
盡管如此,Koehler承認(rèn),他將“很樂(lè)于看到MongoDB繼續(xù)使全球集群和多位置[功能]更加無(wú)縫化且易于使用。” 這些屬于全球性的分布式集群,復(fù)制和負(fù)載平衡是Cassandra和Riak眾所周知的功能。
從規(guī)模討論的角度來(lái)看,很少有公司達(dá)到Weather公司的經(jīng)營(yíng)規(guī)模。易于開(kāi)發(fā),架構(gòu)靈活性和JSON數(shù)據(jù)處理使得MongoDB的成為世界上最流行的NoSQL數(shù)據(jù)庫(kù)。這就是為什么微軟和IBM都進(jìn)行了MongoDB的模仿,如微軟的Azure DocumentDB和IBM的 Cloudant,而不是Cassandra和Riak。
Weather公司可以從三個(gè)NoSQL標(biāo)準(zhǔn)降低至兩個(gè)的過(guò)程中得到鞏固,Koehler說(shuō),但公司沒(méi)有準(zhǔn)備好這么做。
“由于我們構(gòu)造了由許多不同的數(shù)據(jù)解決方案組成的網(wǎng)狀結(jié)構(gòu),我們目前的環(huán)境已過(guò)于復(fù)雜,”他說(shuō)。“我們希望給團(tuán)隊(duì)一些自由的空間,讓我們可以了解所有選擇的利弊,但你將會(huì)看到一些整合。”
到了那個(gè)時(shí)候,遷移將不在是一件難事,因?yàn)椤瓣P(guān)于NoSQL數(shù)據(jù)庫(kù)最重要的事情是,你不會(huì)被困在其中,” Koehler說(shuō)。“如果你的架構(gòu)和編碼正確,從一個(gè)數(shù)據(jù)庫(kù)遷移到另一個(gè)并不難。隨著模式的自由以及數(shù)據(jù)轉(zhuǎn)存技術(shù)的發(fā)展,無(wú)論前者是一個(gè)key-value存儲(chǔ)或其他什么形式,轉(zhuǎn)儲(chǔ)數(shù)據(jù)都將十分容易。“
對(duì)特定產(chǎn)品進(jìn)程自定義編碼的復(fù)雜的存儲(chǔ)過(guò)程已經(jīng)一去不復(fù)返了,Koehler說(shuō),但關(guān)于“結(jié)構(gòu)化和編碼正確”還有很多需要考慮的地方?這樣做是為了避免特殊供應(yīng)商提供的工具和功能可能讓你身陷其中。他舉了亞馬遜網(wǎng)絡(luò)服務(wù)“(AWS)的消息服務(wù)為例。
“你不必讓服務(wù)在云中運(yùn)行,”他解釋說(shuō)。“你可以只部署自己的RabbitMQ的環(huán)境,而不是陷于其中,所以你可以將一個(gè)原先部署在AWS 上的應(yīng)用程序轉(zhuǎn)而部署在谷歌計(jì)算云服務(wù)上。無(wú)論它是數(shù)據(jù)平臺(tái),存儲(chǔ)環(huán)境,或云計(jì)算環(huán)境,都要小心別讓自己局限在一個(gè)僅由一個(gè)供應(yīng)商提供的小范圍空間內(nèi)“。
轉(zhuǎn)載
分享文章:nosql數(shù)據(jù)庫(kù)使用更加,最簡(jiǎn)單的NoSQL數(shù)據(jù)庫(kù)
轉(zhuǎn)載源于:http://chinadenli.net/article11/dsejsgd.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供品牌網(wǎng)站設(shè)計(jì)、網(wǎng)站營(yíng)銷、網(wǎng)站收錄、網(wǎng)站制作、企業(yè)網(wǎng)站制作、網(wǎng)站策劃
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)