欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

Python中的DataFrame模塊學(xué)習(xí)

本文是基于Windows系統(tǒng)環(huán)境,學(xué)習(xí)和測試DataFrame模塊:

成都創(chuàng)新互聯(lián)公司-專業(yè)網(wǎng)站定制、快速模板網(wǎng)站建設(shè)、高性價(jià)比中山網(wǎng)站開發(fā)、企業(yè)建站全套包干低至880元,成熟完善的模板庫,直接使用。一站式中山網(wǎng)站制作公司更省心,省錢,快速模板網(wǎng)站建設(shè)找我們,業(yè)務(wù)覆蓋中山地區(qū)。費(fèi)用合理售后完善,十多年實(shí)體公司更值得信賴。

Windows 10

PyCharm 2018.3.5 for Windows (exe)

python 3.6.8 Windows x86 executable installer

1. 初始化DataFrame

創(chuàng)建一個(gè)空的DataFrame變量

import pandas as pd

import numpy as np

data = pd.DataFrame()

print(np.shape(data)) # (0,0)

通過字典創(chuàng)建一個(gè)DataFrame

import pandas as pd

import numpy as np

dict_a = {'name': ['xu', 'wang'], 'gender': ['male', 'female']}

data = pd.DataFrame(dict_a)

print(np.shape(data)) # (2,2)

print(data)

# data =

# name gender

# 0 xu male

# 1 wang female

通過numpy.array創(chuàng)建一個(gè)DataFrame

import pandas as pd

import numpy as np

mat = np.random.randn(3,4)

df = pd.DataFrame(mat)

df.columns = ['a','b','c','d']

print(df)

一個(gè)DataFrame轉(zhuǎn)成numpy.array

import pandas as pd

import numpy as np

mat = np.random.randn(3,4)

df = pd.DataFrame(mat)

df.columns = ['a','b','c','d']

print(df)

n = np.array(df)

print(n)

DataFrame增加一列數(shù)據(jù)

import pandas as pd

import numpy as np

data = pd.DataFrame()

data['ID'] = range(0,10)

print(np.shape(data)) # (10,1)

DataFrame增加一列數(shù)據(jù),且值相同

import pandas as pd

import numpy as np

dict_a = {'name': ['xu', 'wang'], 'gender': ['male', 'female']}

data = pd.DataFrame(dict_a)

data['country'] = 'China'

print(data)

# data =

# name gender country

# 0 xu male China

# 1 wang female China

DataFrame刪除重復(fù)的數(shù)據(jù)行

import pandas as pd

norepeat_df = df.drop_duplicates(subset=['A_ID', 'B_ID'], keep='first')

# norepeat_df = df.drop_duplicates(subset=[1, 2], keep='first')

# keep=False時(shí),就是去掉所有的重復(fù)行

# keep=‘first'時(shí),就是保留第一次出現(xiàn)的重復(fù)行

# keep='last'時(shí)就是保留最后一次出現(xiàn)的重復(fù)行。

2. 基本操作

去除某一列兩端的指定字符

import pandas as pd

dict_a = {'name': ['.xu', 'wang'], 'gender': ['male', 'female.']}

data = pd.DataFrame(dict_a)

print(data)

# data =

# name gender

# 0 .xu male

# 1 wang female.

data['name'] = data['name'].str.strip('.') # 刪除'.'

# data['name'] = data['name'].str.strip() # 刪除空格

print(data)

# data =

# name gender

# 0 xu male

# 1 wang female.

重新調(diào)整index的值

import pandas as pd

data = pd.DataFrame()

data['ID'] = range(0,3)

# data =

# ID

# 0 0

# 1 1

# 2 2

data.index = range(1,len(data) + 1)

# data =

# ID

# 1 0

# 2 1

# 3 2

調(diào)整DataFrame列順序

import pandas as pd

data = pd.DataFrame()

print(data)

# data =

# ID name

# 0 0 xu

# 1 1 wang

# 2 2 li

data = data[['name','ID']]

# data =

# name ID

# 0 xu 0

# 1 wang 1

# 2 li 2無錫人流醫(yī)院 http://www.bhnfkyy.com/

獲取DataFrame的列名

import pandas as pd

data = pd.DataFrame()

print(data)

# data =

# ID name

# 0 0 xu

# 1 1 wang

# 2 2 li

print(data.columns.values.tolist())

# ['ID', 'name']

獲取DataFrame的行名

import pandas as pd

data = pd.DataFrame()

print(data)

# data =

# ID name

# 0 0 xu

# 1 1 wang

# 2 2 li

print(data._stat_axis.values.tolist())

# [0, 1, 2]

3. 讀寫操作

將csv文件讀入DataFrame數(shù)據(jù)

read_csv()函數(shù)的參數(shù)配置參考官網(wǎng)pandas.read_csv

import pandas as pd

data = pd.read_csv('user.csv')

print (data)

將DataFrame數(shù)據(jù)寫入csv文件

to_csv()函數(shù)的參數(shù)配置參考官網(wǎng)pandas.DataFrame.to_csv

import pandas as pd

data = pd.read_csv('test1.csv')

data.to_csv("test2.csv",index=False, header=True)

4. 異常處理

過濾所有包含NaN的行

dropna()函數(shù)的參數(shù)配置參考官網(wǎng)pandas.DataFrame.dropna

from numpy import nan as NaN

import pandas as pd

data = pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])

print (data)

# data =

# 1 2 3

# NaN NaN 2

# NaN NaN NaN

# 8 8 NaN

data = data.dropna()

# DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

# axis: 0 or 'index'表示去除行 1 or 'columns'表示去除列

# how: 'any'表示行或列只要含有NaN就去除,'all'表示行或列全都含有NaN才去除

# thresh: 整數(shù)n,表示每行或列中至少有n個(gè)元素補(bǔ)位NaN,否則去除

# subset: ['name', 'gender'] 在子集中去除NaN值,子集也可以index,但是要配合axis=1

# inplace: 如何為True,則執(zhí)行操作,然后返回None

print(data)

# data =

# 1 2 3

當(dāng)前名稱:Python中的DataFrame模塊學(xué)習(xí)
當(dāng)前網(wǎng)址:http://chinadenli.net/article10/pioodo.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供自適應(yīng)網(wǎng)站小程序開發(fā)、搜索引擎優(yōu)化、App設(shè)計(jì)、軟件開發(fā)做網(wǎng)站

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

成都定制網(wǎng)站網(wǎng)頁設(shè)計(jì)