這篇文章將為大家詳細(xì)講解有關(guān)怎么在Python中使用dHash算法,文章內(nèi)容質(zhì)量較高,因此小編分享給大家做個參考,希望大家閱讀完這篇文章后對相關(guān)知識有一定的了解。

創(chuàng)新互聯(lián)公司基于成都重慶香港及美國等地區(qū)分布式IDC機(jī)房數(shù)據(jù)中心構(gòu)建的電信大帶寬,聯(lián)通大帶寬,移動大帶寬,多線BGP大帶寬租用,是為眾多客戶提供專業(yè)服務(wù)器托管報價,主機(jī)托管價格性價比高,為金融證券行業(yè)簡陽服務(wù)器托管,ai人工智能服務(wù)器托管提供bgp線路100M獨(dú)享,G口帶寬及機(jī)柜租用的專業(yè)成都idc公司。
1、云計算,典型應(yīng)用OpenStack。2、WEB前端開發(fā),眾多大型網(wǎng)站均為Python開發(fā)。3.人工智能應(yīng)用,基于大數(shù)據(jù)分析和深度學(xué)習(xí)而發(fā)展出來的人工智能本質(zhì)上已經(jīng)無法離開python。4、系統(tǒng)運(yùn)維工程項目,自動化運(yùn)維的標(biāo)配就是python+Django/flask。5、金融理財分析,量化交易,金融分析。6、大數(shù)據(jù)分析。
1、說明
縮小圖片:縮小到9*8,這樣它就有72個像素點(diǎn)。
轉(zhuǎn)換成灰度圖。
計算差異值:dHash算法在相鄰像素之間工作,因此每行9個像素之間產(chǎn)生8個不同的差異,總共8行,產(chǎn)生64個差異值。
獲取指紋:如果左像素比右像素亮,記錄為1,否則為0。
最后對比兩張圖片的指紋,獲得漢明距離。
2、實例
# -*- coding: utf-8 -*-
# 利用python實現(xiàn)多種方法來實現(xiàn)圖像識別
import cv2
import numpy as np
from matplotlib import pyplot as plt
# 最簡單的以灰度直方圖作為相似比較的實現(xiàn)
def classify_gray_hist(image1,image2,size = (256,256)):
# 先計算直方圖
# 幾個參數(shù)必須用方括號括起來
# 這里直接用灰度圖計算直方圖,所以是使用第一個通道,
# 也可以進(jìn)行通道分離后,得到多個通道的直方圖
# bins 取為16
image1 = cv2.resize(image1,size)
image2 = cv2.resize(image2,size)
hist1 = cv2.calcHist([image1],[0],None,[256],[0.0,255.0])
hist2 = cv2.calcHist([image2],[0],None,[256],[0.0,255.0])
# 可以比較下直方圖
plt.plot(range(256),hist1,'r')
plt.plot(range(256),hist2,'b')
plt.show()
# 計算直方圖的重合度
degree = 0
for i in range(len(hist1)):
if hist1[i] != hist2[i]:
degree = degree + (1 - abs(hist1[i]-hist2[i])/max(hist1[i],hist2[i]))
else:
degree = degree + 1
degree = degree/len(hist1)
return degree
# 計算單通道的直方圖的相似值
def calculate(image1,image2):
hist1 = cv2.calcHist([image1],[0],None,[256],[0.0,255.0])
hist2 = cv2.calcHist([image2],[0],None,[256],[0.0,255.0])
# 計算直方圖的重合度
degree = 0
for i in range(len(hist1)):
if hist1[i] != hist2[i]:
degree = degree + (1 - abs(hist1[i]-hist2[i])/max(hist1[i],hist2[i]))
else:
degree = degree + 1
degree = degree/len(hist1)
return degree
# 通過得到每個通道的直方圖來計算相似度
def classify_hist_with_split(image1,image2,size = (256,256)):
# 將圖像resize后,分離為三個通道,再計算每個通道的相似值
image1 = cv2.resize(image1,size)
image2 = cv2.resize(image2,size)
sub_image1 = cv2.split(image1)
sub_image2 = cv2.split(image2)
sub_data = 0
for im1,im2 in zip(sub_image1,sub_image2):
sub_data += calculate(im1,im2)
sub_data = sub_data/3
return sub_data
# 平均哈希算法計算
def classify_aHash(image1,image2):
image1 = cv2.resize(image1,(8,8))
image2 = cv2.resize(image2,(8,8))
gray1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY)
hash2 = getHash(gray1)
hash3 = getHash(gray2)
return Hamming_distance(hash2,hash3)
def classify_pHash(image1,image2):
image1 = cv2.resize(image1,(32,32))
image2 = cv2.resize(image2,(32,32))
gray1 = cv2.cvtColor(image1,cv2.COLOR_BGR2GRAY)
gray2 = cv2.cvtColor(image2,cv2.COLOR_BGR2GRAY)
# 將灰度圖轉(zhuǎn)為浮點(diǎn)型,再進(jìn)行dct變換
dct1 = cv2.dct(np.float32(gray1))
dct2 = cv2.dct(np.float32(gray2))
# 取左上角的8*8,這些代表圖片的最低頻率
# 這個操作等價于c++中利用opencv實現(xiàn)的掩碼操作
# 在python中進(jìn)行掩碼操作,可以直接這樣取出圖像矩陣的某一部分
dct1_roi = dct1[0:8,0:8]
dct2_roi = dct2[0:8,0:8]
hash2 = getHash(dct1_roi)
hash3 = getHash(dct2_roi)
return Hamming_distance(hash2,hash3)
# 輸入灰度圖,返回hash
def getHash(image):
avreage = np.mean(image)
hash = []
for i in range(image.shape[0]):
for j in range(image.shape[1]):
if image[i,j] > avreage:
hash.append(1)
else:
hash.append(0)
return hash
# 計算漢明距離
def Hamming_distance(hash2,hash3):
num = 0
for index in range(len(hash2)):
if hash2[index] != hash3[index]:
num += 1
return num
if __name__ == '__main__':
img1 = cv2.imread('10.jpg')
cv2.imshow('img1',img1)
img2 = cv2.imread('11.jpg')
cv2.imshow('img2',img2)
degree = classify_gray_hist(img1,img2)
#degree = classify_hist_with_split(img1,img2)
#degree = classify_aHash(img1,img2)
#degree = classify_pHash(img1,img2)
print degree
cv2.waitKey(0)關(guān)于怎么在Python中使用dHash算法就分享到這里了,希望以上內(nèi)容可以對大家有一定的幫助,可以學(xué)到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。
當(dāng)前文章:怎么在Python中使用dHash算法
網(wǎng)址分享:http://chinadenli.net/article10/goeddo.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供、網(wǎng)站營銷、品牌網(wǎng)站制作、品牌網(wǎng)站設(shè)計、企業(yè)建站、外貿(mào)網(wǎng)站建設(shè)
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時需注明來源: 創(chuàng)新互聯(lián)