欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

Hadoop上DataLocality的詳解-創(chuàng)新互聯(lián)

Hadoop上Data Locality的詳解

創(chuàng)新互聯(lián)是一家專業(yè)提供綏濱企業(yè)網(wǎng)站建設(shè),專注與網(wǎng)站建設(shè)、成都網(wǎng)站設(shè)計(jì)H5開發(fā)、小程序制作等業(yè)務(wù)。10年已為綏濱眾多企業(yè)、政府機(jī)構(gòu)等服務(wù)。創(chuàng)新互聯(lián)專業(yè)網(wǎng)絡(luò)公司優(yōu)惠進(jìn)行中。

Hadoop上的Data Locality是指數(shù)據(jù)與Mapper任務(wù)運(yùn)行時(shí)數(shù)據(jù)的距離接近程度(Data Locality in Hadoop refers to the“proximity” of the data with respect to the Mapper tasks working on the data.)

1. why data locality is imporant?

當(dāng)數(shù)據(jù)集存儲在HDFS中時(shí),它被劃分為塊并存儲在Hadoop集群中的DataNode上。當(dāng)在數(shù)據(jù)集執(zhí)行MapReduce作業(yè)時(shí),各個(gè)Mappers將處理這些塊(輸進(jìn)行入分片處理)。如果Mapper不能從它執(zhí)行的節(jié)點(diǎn)上獲取數(shù)據(jù),數(shù)據(jù)需要通過網(wǎng)絡(luò)從具有這些數(shù)據(jù)的DataNode拷貝到執(zhí)行Mapper任務(wù)的節(jié)點(diǎn)上(the data needs to be copied over the network from the DataNode which has the data to the DataNode which is executing the Mapper task)。假設(shè)一個(gè)MapReduce作業(yè)具有超過1000個(gè)Mapper,在同一時(shí)間每一個(gè)Mapper都試著去從集群上另一個(gè)DataNode節(jié)點(diǎn)上拷貝數(shù)據(jù),這將導(dǎo)致嚴(yán)重的網(wǎng)絡(luò)阻塞,因?yàn)樗械腗apper都嘗試在同一時(shí)間拷貝數(shù)據(jù)(這不是一種理想的方法)。因此,將計(jì)算任務(wù)移動(dòng)到更接近數(shù)據(jù)的節(jié)點(diǎn)上是一種更有效與廉價(jià)的方法,相比于將數(shù)據(jù)移動(dòng)到更接近計(jì)算任務(wù)的節(jié)點(diǎn)上(it is always effective and cheap to move the computation closer to the data than to move the data closer to the computation)。

2. How is data proximity defined?

當(dāng)JobTracker(MRv1)或ApplicationMaster(MRv2)接收到運(yùn)行作業(yè)的請求時(shí),它查看集群中的哪些節(jié)點(diǎn)有足夠的資源來執(zhí)行該作業(yè)的Mappers和Reducers。同時(shí)需要根據(jù)Mapper運(yùn)行數(shù)據(jù)所處位置來考慮決定每個(gè)Mapper執(zhí)行的節(jié)點(diǎn)(serious consideration is made to decide on which nodes the individual Mappers will be executed based on where the data for the Mapper is located)。

Hadoop上Data Locality的詳解

3. Data Local

當(dāng)數(shù)據(jù)所處的節(jié)點(diǎn)與Mapper執(zhí)行的節(jié)點(diǎn)是同一節(jié)點(diǎn),我們稱之為Data Local。在這種情況下,數(shù)據(jù)的接近度更接近計(jì)算( In this case the proximity of the data is closer to the computation.)。JobTracker(MRv1)或ApplicationMaster(MRv2)選具有Mapper所需要數(shù)據(jù)的節(jié)點(diǎn)來執(zhí)行Mapper。

4. Rack Local

雖然Data Local是理想的選擇,但由于受限于集群上的資源,并不總是在與數(shù)據(jù)同一節(jié)點(diǎn)上執(zhí)行Mapper(Although Data Local is the ideal choice, it is not always possible to execute the Mapper on the same node as the data due to resource constraints on a busy cluster)。在這種情況下,優(yōu)選地選擇在那些與數(shù)據(jù)節(jié)點(diǎn)在同一機(jī)架上的不同節(jié)點(diǎn)上運(yùn)行Mapper( In such instances it is preferred to run the Mapper on a different node but on the same rack as the node which has the data.)。在這種情況下,數(shù)據(jù)將在節(jié)點(diǎn)之間進(jìn)行移動(dòng),從具有數(shù)據(jù)的節(jié)點(diǎn)移動(dòng)到在同一機(jī)架上執(zhí)行Mapper的節(jié)點(diǎn),這種情況我們稱之為Rack Local。

5. Different Rack

在繁忙的群集中,有時(shí)Rack Local也不可能。在這種情況下,選擇不同機(jī)架上的節(jié)點(diǎn)來執(zhí)行Mapper,并且將數(shù)據(jù)從具有數(shù)據(jù)的節(jié)點(diǎn)復(fù)制到在不同機(jī)架上執(zhí)行Mapper的節(jié)點(diǎn)。這是最不可取的情況。

如有疑問請留言或者到本站社區(qū)交流討論,感謝閱讀,希望能幫助到大家,謝謝大家對本站的支持!

網(wǎng)頁名稱:Hadoop上DataLocality的詳解-創(chuàng)新互聯(lián)
文章來源:http://chinadenli.net/article38/ccgcsp.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供網(wǎng)站內(nèi)鏈用戶體驗(yàn)服務(wù)器托管網(wǎng)站維護(hù)網(wǎng)站排名自適應(yīng)網(wǎng)站

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請盡快告知,我們將會在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場,如需處理請聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

網(wǎng)站托管運(yùn)營