欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

計(jì)算損失函數(shù)Python的簡(jiǎn)單介紹

怎樣用python構(gòu)建一個(gè)卷積神經(jīng)網(wǎng)絡(luò)?

用keras框架較為方便

成都創(chuàng)新互聯(lián)公司是專業(yè)的宛城網(wǎng)站建設(shè)公司,宛城接單;提供成都網(wǎng)站設(shè)計(jì)、網(wǎng)站建設(shè),網(wǎng)頁(yè)設(shè)計(jì),網(wǎng)站設(shè)計(jì),建網(wǎng)站,PHP網(wǎng)站建設(shè)等專業(yè)做網(wǎng)站服務(wù);采用PHP框架,可快速的進(jìn)行宛城網(wǎng)站開發(fā)網(wǎng)頁(yè)制作和功能擴(kuò)展;專業(yè)做搜索引擎喜愛的網(wǎng)站,專業(yè)的做網(wǎng)站團(tuán)隊(duì),希望更多企業(yè)前來合作!

首先安裝anaconda,然后通過pip安裝keras

1、#導(dǎo)入各種用到的模塊組件

from __future__ import absolute_import

from __future__ import print_function

from keras.preprocessing.image import ImageDataGenerator

from keras.models import Sequential

from keras.layers.core import Dense, Dropout, Activation, Flatten

from keras.layers.advanced_activations import PReLU

from keras.layers.convolutional import Convolution2D, MaxPooling2D

from keras.optimizers import SGD, Adadelta, Adagrad

from keras.utils import np_utils, generic_utils

from six.moves import range

from data import load_data

import random

import numpy as np

np.random.seed(1024) ?# for reproducibility

2、。#打亂數(shù)據(jù)

index = [i for i in range(len(data))]

random.shuffle(index)

data = data[index]

label = label[index]

print(data.shape[0], ' samples')

#label為0~9共10個(gè)類別,keras要求格式為binary class matrices,轉(zhuǎn)化一下,直接調(diào)用keras提供的這個(gè)函數(shù)

label = np_utils.to_categorical(label, 10)

###############

#開始建立CNN模型

###############

#生成一個(gè)model

model = Sequential()

3、#第一個(gè)卷積層,4個(gè)卷積核,每個(gè)卷積核大小5*5。1表示輸入的圖片的通道,灰度圖為1通道。

#border_mode可以是valid或者full,具體看這里說明:

#激活函數(shù)用tanh

#你還可以在model.add(Activation('tanh'))后加上dropout的技巧: model.add(Dropout(0.5))

model.add(Convolution2D(4, 5, 5, border_mode='valid',input_shape=(1,28,28)))

model.add(Activation('tanh'))

#第二個(gè)卷積層,8個(gè)卷積核,每個(gè)卷積核大小3*3。4表示輸入的特征圖個(gè)數(shù),等于上一層的卷積核個(gè)數(shù)

4、全連接層,先將前一層輸出的二維特征圖flatten為一維的。

#Dense就是隱藏層。16就是上一層輸出的特征圖個(gè)數(shù)。4是根據(jù)每個(gè)卷積層計(jì)算出來的:(28-5+1)得到24,(24-3+1)/2得到11,(11-3+1)/2得到4

#全連接有128個(gè)神經(jīng)元節(jié)點(diǎn),初始化方式為normal

model.add(Flatten())

model.add(Dense(128, init='normal'))

model.add(Activation('tanh'))

#Softmax分類,輸出是10類別

model.add(Dense(10, init='normal'))

model.add(Activation('softmax'))

#############

#開始訓(xùn)練模型

##############

#使用SGD + momentum

#model.compile里的參數(shù)loss就是損失函數(shù)(目標(biāo)函數(shù))

sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)

model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])

#調(diào)用fit方法,就是一個(gè)訓(xùn)練過程. 訓(xùn)練的epoch數(shù)設(shè)為10,batch_size為100.

#數(shù)據(jù)經(jīng)過隨機(jī)打亂shuffle=True。verbose=1,訓(xùn)練過程中輸出的信息,0、1、2三種方式都可以,無關(guān)緊要。show_accuracy=True,訓(xùn)練時(shí)每一個(gè)epoch都輸出accuracy。

#validation_split=0.2,將20%的數(shù)據(jù)作為驗(yàn)證集。

model.fit(data, label, batch_size=100, nb_epoch=10,shuffle=True,verbose=1,validation_split=0.2)

"""

#使用data augmentation的方法

#一些參數(shù)和調(diào)用的方法,請(qǐng)看文檔

datagen = ImageDataGenerator(

featurewise_center=True, # set input mean to 0 over the dataset

samplewise_center=False, # set each sample mean to 0

featurewise_std_normalization=True, # divide inputs by std of the dataset

samplewise_std_normalization=False, # divide each input by its std

zca_whitening=False, # apply ZCA whitening

rotation_range=20, # randomly rotate images in the range (degrees, 0 to 180)

width_shift_range=0.2, # randomly shift images horizontally (fraction of total width)

height_shift_range=0.2, # randomly shift images vertically (fraction of total height)

horizontal_flip=True, # randomly flip images

vertical_flip=False) # randomly flip images

# compute quantities required for featurewise normalization

# (std, mean, and principal components if ZCA whitening is applied)

datagen.fit(data)

for e in range(nb_epoch):

print('-'*40)

print('Epoch', e)

print('-'*40)

print("Training...")

# batch train with realtime data augmentation

progbar = generic_utils.Progbar(data.shape[0])

for X_batch, Y_batch in datagen.flow(data, label):

loss,accuracy = model.train(X_batch, Y_batch,accuracy=True)

progbar.add(X_batch.shape[0], values=[("train loss", loss),("accuracy:", accuracy)] )

各種損失函數(shù)詳解

損失函數(shù)(Loss Function):是定義在單個(gè)樣本上的,是指一個(gè)樣本的誤差。

代價(jià)函數(shù)(Cost Function):是定義在整個(gè)訓(xùn)練集上的,是所有樣本誤差的平均,也就是所有損失函數(shù)值的平均。

目標(biāo)函數(shù)(Object Function):是指最終需要優(yōu)化的函數(shù),一般來說是經(jīng)驗(yàn)風(fēng)險(xiǎn)+結(jié)構(gòu)風(fēng)險(xiǎn),也就是(代價(jià)函數(shù)+正則化項(xiàng))。

也就是說,當(dāng)預(yù)測(cè)錯(cuò)誤時(shí),損失函數(shù)為1,當(dāng)預(yù)測(cè)正確時(shí),損失函數(shù)值為0。該損失函數(shù)不考慮預(yù)測(cè)值和真實(shí)值的誤差程度。只要錯(cuò)誤,就是1。

是指預(yù)測(cè)值與實(shí)際值差的平方。

該損失函數(shù)的意義和上面差不多,只不過是取了絕對(duì)值而不是求絕對(duì)值,差距不會(huì)被平方放大。

這個(gè)損失函數(shù)就比較難理解了。事實(shí)上,該損失函數(shù)用到了極大似然估計(jì)的思想。P(Y|X)通俗的解釋就是:在當(dāng)前模型的基礎(chǔ)上,對(duì)于樣本X,其預(yù)測(cè)值為Y,也就是預(yù)測(cè)正確的概率。由于概率之間的同時(shí)滿足需要使用乘法,為了將其轉(zhuǎn)化為加法,我們將其取對(duì)數(shù)。最后由于是損失函數(shù),所以預(yù)測(cè)正確的概率越高,其損失值應(yīng)該是越小,因此再加個(gè)負(fù)號(hào)取個(gè)反。

Hinge loss一般分類算法中的損失函數(shù),尤其是SVM,其定義為:

其中 或 y, ,當(dāng)為SVM的線性核時(shí)。

均方誤差是指參數(shù)估計(jì)值與參數(shù)真值之差平方的期望值; MSE可以評(píng)價(jià)數(shù)據(jù)的變化程度,MSE的值越小,說明預(yù)測(cè)模型描述實(shí)驗(yàn)數(shù)據(jù)具有更好的精確度。(i表示第 i 個(gè)樣本,N 表示樣本總數(shù))

通常用來做回歸問題的代價(jià)函數(shù) 。

均方根誤差是均方誤差的 算術(shù)平方根 ,能夠直觀觀測(cè)預(yù)測(cè)值與實(shí)際值的離散程度。

通常用來作為回歸算法的性能指標(biāo) 。

平均絕對(duì)誤差是絕對(duì)誤差的平均值 ,平均絕對(duì)誤差能更好地反映預(yù)測(cè)值誤差的實(shí)際情況。

通常用來作為回歸算法的性能指標(biāo) 。

交叉熵是用來評(píng)估當(dāng)前訓(xùn)練得到的概率分布與真實(shí)分布的差異情況,減少交叉熵?fù)p失就是在提高模型的預(yù)測(cè)準(zhǔn)確率。其中 p(x)p(x) 是指真實(shí)分布的概率, q(x) 是模型通過數(shù)據(jù)計(jì)算出來的概率估計(jì)。

比如對(duì)于二分類模型的交叉熵代價(jià)函數(shù)(可參考邏輯回歸一節(jié)):

其中 可以是sigmoid函數(shù)。或深度學(xué)習(xí)中的其它激活函數(shù)。而 。

通常用做分類問題的代價(jià)函數(shù)。

正則化項(xiàng)L1和L2的直觀理解及L1不可導(dǎo)處理

正則化(Regularization)

機(jī)器學(xué)習(xí)中幾乎都可以看到損失函數(shù)后面會(huì)添加一個(gè)額外項(xiàng),常用的額外項(xiàng)一般有兩種,一般英文稱作 ?1-norm 和 ?2-norm ,中文稱作 L1正則化 和 L2正則化 ,或者 L1范數(shù) 和 L2范數(shù) 。

L1正則化和L2正則化可以看做是損失函數(shù)的懲罰項(xiàng)。所謂『懲罰』是指對(duì)損失函數(shù)中的某些參數(shù)做一些限制。對(duì)于線性回歸模型,使用L1正則化的模型建叫做Lasso回歸,使用L2正則化的模型叫做Ridge回歸(嶺回歸)。下圖是Python中Lasso回歸的損失函數(shù),式中加號(hào)后面一項(xiàng)α||w||1即為L(zhǎng)1正則化項(xiàng)。

下圖是Python中Ridge回歸的損失函數(shù),式中加號(hào)后面一項(xiàng)α||w||22即為L(zhǎng)2正則化項(xiàng)。

一般回歸分析中回歸w表示特征的系數(shù),從上式可以看到正則化項(xiàng)是對(duì)系數(shù)做了處理(限制)。 L1正則化和L2正則化的說明如下:

L1正則化是指權(quán)值向量w中各個(gè)元素的 絕對(duì)值之和 ,通常表示為||w||1

L2正則化是指權(quán)值向量w中各個(gè)元素的 平方和然后再求平方根 (可以看到Ridge回歸的L2正則化項(xiàng)有平方符號(hào)),通常表示為||w||2

一般都會(huì)在正則化項(xiàng)之前添加一個(gè)系數(shù),Python中用α表示,一些文章也用λ表示。這個(gè)系數(shù)需要用戶指定。

那添加L1和L2正則化有什么用? 下面是L1正則化和L2正則化的作用 ,這些表述可以在很多文章中找到。

L1正則化可以產(chǎn)生稀疏權(quán)值矩陣,即產(chǎn)生一個(gè)稀疏模型,可以用于特征選擇

L2正則化可以防止模型過擬合(overfitting);一定程度上,L1也可以防止過擬合

稀疏模型與特征選擇

上面提到L1正則化有助于生成一個(gè)稀疏權(quán)值矩陣,進(jìn)而可以用于特征選擇。為什么要生成一個(gè)稀疏矩陣?

稀疏矩陣指的是很多元素為0,只有少數(shù)元素是非零值的矩陣,即得到的線性回歸模型的大部分系數(shù)都是0.

通常機(jī)器學(xué)習(xí)中特征數(shù)量很多,例如文本處理時(shí),如果將一個(gè)詞組(term)作為一個(gè)特征,那么特征數(shù)量會(huì)達(dá)到上萬(wàn)個(gè)(bigram)。在預(yù)測(cè)或分類時(shí),那么多特征顯然難以選擇,但是如果代入這些特征得到的模型是一個(gè)稀疏模型,表示只有少數(shù)特征對(duì)這個(gè)模型有貢獻(xiàn),絕大部分特征是沒有貢獻(xiàn)的,或者貢獻(xiàn)微小(因?yàn)樗鼈兦懊娴南禂?shù)是0或者是很小的值,即使去掉對(duì)模型也沒有什么影響),此時(shí)我們就可以只關(guān)注系數(shù)是非零值的特征。這就是稀疏模型與特征選擇的關(guān)系。

L1和L2正則化的直觀理解

這部分內(nèi)容將解釋 為什么L1正則化可以產(chǎn)生稀疏模型(L1是怎么讓系數(shù)等于零的) ,以及 為什么L2正則化可以防止過擬合 。

L1正則化和特征選擇

假設(shè)有如下帶L1正則化的損失函數(shù):

J=J0+α∑w|w|(1)

其中J0是原始的損失函數(shù),加號(hào)后面的一項(xiàng)是L1正則化項(xiàng),α是正則化系數(shù)。注意到L1正則化是權(quán)值的 絕對(duì)值之和 ,J是帶有絕對(duì)值符號(hào)的函數(shù),因此J是不完全可微的。機(jī)器學(xué)習(xí)的任務(wù)就是要通過一些方法(比如梯度下降)求出損失函數(shù)的最小值。當(dāng)我們?cè)谠紦p失函數(shù)J0后添加L1正則化項(xiàng)時(shí),相當(dāng)于對(duì)J0做了一個(gè)約束。令L=α∑w|w|,則J=J0+L,此時(shí)我們的任務(wù)變成 在L約束下求出J0取最小值的解 。考慮二維的情況,即只有兩個(gè)權(quán)值w1和w2,此時(shí)L=|w1|+|w2|對(duì)于梯度下降法,求解J0的過程可以畫出等值線,同時(shí)L1正則化的函數(shù)L也可以在w1w2的二維平面上畫出來。如下圖:

圖1? L1正則化

圖中等值線是J0的等值線,黑色方形是L函數(shù)的圖形。在圖中,當(dāng)J0等值線與L圖形首次相交的地方就是最優(yōu)解。上圖中J0與L在L的一個(gè)頂點(diǎn)處相交,這個(gè)頂點(diǎn)就是最優(yōu)解。注意到這個(gè)頂點(diǎn)的值是(w1,w2)=(0,w)。可以直觀想象,因?yàn)長(zhǎng)函數(shù)有很多『突出的角』(二維情況下四個(gè),多維情況下更多),J0與這些角接觸的機(jī)率會(huì)遠(yuǎn)大于與L其它部位接觸的機(jī)率,而在這些角上,會(huì)有很多權(quán)值等于0,這就是為什么L1正則化可以產(chǎn)生稀疏模型,進(jìn)而可以用于特征選擇。

而正則化前面的系數(shù)α,可以控制L圖形的大小。α越小,L的圖形越大(上圖中的黑色方框);α越大,L的圖形就越小,可以小到黑色方框只超出原點(diǎn)范圍一點(diǎn)點(diǎn),這是最優(yōu)點(diǎn)的值(w1,w2)=(0,w)中的w可以取到很小的值。

類似,假設(shè)有如下帶L2正則化的損失函數(shù):

J=J0+α∑ww2(2)

同樣可以畫出他們?cè)诙S平面上的圖形,如下:

圖2? L2正則化

二維平面下L2正則化的函數(shù)圖形是個(gè)圓,與方形相比,被磨去了棱角。因此J0與L相交時(shí)使得w1或w2等于零的機(jī)率小了許多,這就是為什么L2正則化不具有稀疏性的原因。

L2正則化和過擬合

擬合過程中通常都傾向于讓權(quán)值盡可能小,最后構(gòu)造一個(gè)所有參數(shù)都比較小的模型。因?yàn)橐话阏J(rèn)為參數(shù)值小的模型比較簡(jiǎn)單,能適應(yīng)不同的數(shù)據(jù)集,也在一定程度上避免了過擬合現(xiàn)象。可以設(shè)想一下對(duì)于一個(gè)線性回歸方程,若參數(shù)很大,那么只要數(shù)據(jù)偏移一點(diǎn)點(diǎn),就會(huì)對(duì)結(jié)果造成很大的影響;但如果參數(shù)足夠小,數(shù)據(jù)偏移得多一點(diǎn)也不會(huì)對(duì)結(jié)果造成什么影響,專業(yè)一點(diǎn)的說法是『抗擾動(dòng)能力強(qiáng)』。

那為什么L2正則化可以獲得值很小的參數(shù)?

以線性回歸中的梯度下降法為例。假設(shè)要求的參數(shù)為θ,hθ(x)是我們的假設(shè)函數(shù),那么線性回歸的代價(jià)函數(shù)如下:

J(θ)=12m∑i=1m(hθ(x(i))?y(i))(3)

那么在梯度下降法中,最終用于迭代計(jì)算參數(shù)θ的迭代式為:

θj:=θj?α1m∑i=1m(hθ(x(i))?y(i))x(i)j(4)

其中α是learning rate. 上式是沒有添加L2正則化項(xiàng)的迭代公式,如果在原始代價(jià)函數(shù)之后添加L2正則化,則迭代公式會(huì)變成下面的樣子:

θj:=θj(1?αλm)?α1m∑i=1m(hθ(x(i))?y(i))x(i)j(5)

其中 λ就是正則化參數(shù) 。從上式可以看到,與未添加L2正則化的迭代公式相比,每一次迭代,θj都要先乘以一個(gè)小于1的因子,從而使得θj不斷減小,因此總得來看,θ是不斷減小的。

最開始也提到L1正則化一定程度上也可以防止過擬合。之前做了解釋,當(dāng)L1的正則化系數(shù)很小時(shí),得到的最優(yōu)解會(huì)很小,可以達(dá)到和L2正則化類似的效果。

正則化參數(shù)的選擇

L1正則化參數(shù)

通常越大的λ可以讓代價(jià)函數(shù)在參數(shù)為0時(shí)取到最小值。下面是一個(gè)簡(jiǎn)單的例子,這個(gè)例子來自 Quora上的問答 。為了方便敘述,一些符號(hào)跟這篇帖子的符號(hào)保持一致。

假設(shè)有如下帶L1正則化項(xiàng)的代價(jià)函數(shù):

F(x)=f(x)+λ||x||1

其中x是要估計(jì)的參數(shù),相當(dāng)于上文中提到的w以及θ. 注意到L1正則化在某些位置是不可導(dǎo)的,當(dāng)λ足夠大時(shí)可以使得F(x)在x=0時(shí)取到最小值。如下圖:

圖3 L1正則化參數(shù)的選擇

分別取λ=0.5和λ=2,可以看到越大的λ越容易使F(x)在x=0時(shí)取到最小值。

L2正則化參數(shù)

從公式5可以看到,λ越大,θj衰減得越快。另一個(gè)理解可以參考圖2,λ越大,L2圓的半徑越小,最后求得代價(jià)函數(shù)最值時(shí)各參數(shù)也會(huì)變得很小。

Reference

過擬合的解釋:

正則化的解釋:

正則化的解釋:

正則化的數(shù)學(xué)解釋(一些圖來源于這里):

原文參考:blog.csdn.net/jinping_shi/article/details/52433975

從零開始用Python構(gòu)建神經(jīng)網(wǎng)絡(luò)

從零開始用Python構(gòu)建神經(jīng)網(wǎng)絡(luò)

動(dòng)機(jī):為了更加深入的理解深度學(xué)習(xí),我們將使用 python 語(yǔ)言從頭搭建一個(gè)神經(jīng)網(wǎng)絡(luò),而不是使用像 Tensorflow 那樣的封裝好的框架。我認(rèn)為理解神經(jīng)網(wǎng)絡(luò)的內(nèi)部工作原理,對(duì)數(shù)據(jù)科學(xué)家來說至關(guān)重要。

這篇文章的內(nèi)容是我的所學(xué),希望也能對(duì)你有所幫助。

神經(jīng)網(wǎng)絡(luò)是什么?

介紹神經(jīng)網(wǎng)絡(luò)的文章大多數(shù)都會(huì)將它和大腦進(jìn)行類比。如果你沒有深入研究過大腦與神經(jīng)網(wǎng)絡(luò)的類比,那么將神經(jīng)網(wǎng)絡(luò)解釋為一種將給定輸入映射為期望輸出的數(shù)學(xué)關(guān)系會(huì)更容易理解。

神經(jīng)網(wǎng)絡(luò)包括以下組成部分

? 一個(gè)輸入層,x

? 任意數(shù)量的隱藏層

? 一個(gè)輸出層,?

? 每層之間有一組權(quán)值和偏置,W and b

? 為隱藏層選擇一種激活函數(shù),σ。在教程中我們使用 Sigmoid 激活函數(shù)

下圖展示了 2 層神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)(注意:我們?cè)谟?jì)算網(wǎng)絡(luò)層數(shù)時(shí)通常排除輸入層)

2 層神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)

用 Python 可以很容易的構(gòu)建神經(jīng)網(wǎng)絡(luò)類

訓(xùn)練神經(jīng)網(wǎng)絡(luò)

這個(gè)網(wǎng)絡(luò)的輸出 ? 為:

你可能會(huì)注意到,在上面的等式中,輸出 ? 是 W 和 b 函數(shù)。

因此 W 和 b 的值影響預(yù)測(cè)的準(zhǔn)確率. 所以根據(jù)輸入數(shù)據(jù)對(duì) W 和 b 調(diào)優(yōu)的過程就被成為訓(xùn)練神經(jīng)網(wǎng)絡(luò)。

每步訓(xùn)練迭代包含以下兩個(gè)部分:

? 計(jì)算預(yù)測(cè)結(jié)果 ?,這一步稱為前向傳播

? 更新 W 和 b,,這一步成為反向傳播

下面的順序圖展示了這個(gè)過程:

前向傳播

正如我們?cè)谏蠄D中看到的,前向傳播只是簡(jiǎn)單的計(jì)算。對(duì)于一個(gè)基本的 2 層網(wǎng)絡(luò)來說,它的輸出是這樣的:

我們?cè)?NeuralNetwork 類中增加一個(gè)計(jì)算前向傳播的函數(shù)。為了簡(jiǎn)單起見我們假設(shè)偏置 b 為0:

但是我們還需要一個(gè)方法來評(píng)估預(yù)測(cè)結(jié)果的好壞(即預(yù)測(cè)值和真實(shí)值的誤差)。這就要用到損失函數(shù)。

損失函數(shù)

常用的損失函數(shù)有很多種,根據(jù)模型的需求來選擇。在本教程中,我們使用誤差平方和作為損失函數(shù)。

誤差平方和是求每個(gè)預(yù)測(cè)值和真實(shí)值之間的誤差再求和,這個(gè)誤差是他們的差值求平方以便我們觀察誤差的絕對(duì)值。

訓(xùn)練的目標(biāo)是找到一組 W 和 b,使得損失函數(shù)最好小,也即預(yù)測(cè)值和真實(shí)值之間的距離最小。

反向傳播

我們已經(jīng)度量出了預(yù)測(cè)的誤差(損失),現(xiàn)在需要找到一種方法來傳播誤差,并以此更新權(quán)值和偏置。

為了知道如何適當(dāng)?shù)恼{(diào)整權(quán)值和偏置,我們需要知道損失函數(shù)對(duì)權(quán)值 W 和偏置 b 的導(dǎo)數(shù)。

回想微積分中的概念,函數(shù)的導(dǎo)數(shù)就是函數(shù)的斜率。

梯度下降法

如果我們已經(jīng)求出了導(dǎo)數(shù),我們就可以通過增加或減少導(dǎo)數(shù)值來更新權(quán)值 W 和偏置 b(參考上圖)。這種方式被稱為梯度下降法。

但是我們不能直接計(jì)算損失函數(shù)對(duì)權(quán)值和偏置的導(dǎo)數(shù),因?yàn)樵趽p失函數(shù)的等式中并沒有顯式的包含他們。因此,我們需要運(yùn)用鏈?zhǔn)角髮?dǎo)發(fā)在來幫助計(jì)算導(dǎo)數(shù)。

鏈?zhǔn)椒▌t用于計(jì)算損失函數(shù)對(duì) W 和 b 的導(dǎo)數(shù)。注意,為了簡(jiǎn)單起見。我們只展示了假設(shè)網(wǎng)絡(luò)只有 1 層的偏導(dǎo)數(shù)。

這雖然很簡(jiǎn)陋,但是我們依然能得到想要的結(jié)果—損失函數(shù)對(duì)權(quán)值 W 的導(dǎo)數(shù)(斜率),因此我們可以相應(yīng)的調(diào)整權(quán)值。

現(xiàn)在我們將反向傳播算法的函數(shù)添加到 Python 代碼中

為了更深入的理解微積分原理和反向傳播中的鏈?zhǔn)角髮?dǎo)法則,我強(qiáng)烈推薦 3Blue1Brown 的如下教程:

Youtube:

整合并完成一個(gè)實(shí)例

既然我們已經(jīng)有了包括前向傳播和反向傳播的完整 Python 代碼,那么就將其應(yīng)用到一個(gè)例子上看看它是如何工作的吧。

神經(jīng)網(wǎng)絡(luò)可以通過學(xué)習(xí)得到函數(shù)的權(quán)重。而我們僅靠觀察是不太可能得到函數(shù)的權(quán)重的。

讓我們訓(xùn)練神經(jīng)網(wǎng)絡(luò)進(jìn)行 1500 次迭代,看看會(huì)發(fā)生什么。 注意觀察下面每次迭代的損失函數(shù),我們可以清楚地看到損失函數(shù)單調(diào)遞減到最小值。這與我們之前介紹的梯度下降法一致。

讓我們看看經(jīng)過 1500 次迭代后的神經(jīng)網(wǎng)絡(luò)的最終預(yù)測(cè)結(jié)果:

經(jīng)過 1500 次迭代訓(xùn)練后的預(yù)測(cè)結(jié)果

我們成功了!我們應(yīng)用前向和方向傳播算法成功的訓(xùn)練了神經(jīng)網(wǎng)絡(luò)并且預(yù)測(cè)結(jié)果收斂于真實(shí)值。

注意預(yù)測(cè)值和真實(shí)值之間存在細(xì)微的誤差是允許的。這樣可以防止模型過擬合并且使得神經(jīng)網(wǎng)絡(luò)對(duì)于未知數(shù)據(jù)有著更強(qiáng)的泛化能力。

下一步是什么?

幸運(yùn)的是我們的學(xué)習(xí)之旅還沒有結(jié)束,仍然有很多關(guān)于神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)的內(nèi)容需要學(xué)習(xí)。例如:

? 除了 Sigmoid 以外,還可以用哪些激活函數(shù)

? 在訓(xùn)練網(wǎng)絡(luò)的時(shí)候應(yīng)用學(xué)習(xí)率

? 在面對(duì)圖像分類任務(wù)的時(shí)候使用卷積神經(jīng)網(wǎng)絡(luò)

我很快會(huì)寫更多關(guān)于這個(gè)主題的內(nèi)容,敬請(qǐng)期待!

最后的想法

我自己也從零開始寫了很多神經(jīng)網(wǎng)絡(luò)的代碼

雖然可以使用諸如 Tensorflow 和 Keras 這樣的深度學(xué)習(xí)框架方便的搭建深層網(wǎng)絡(luò)而不需要完全理解其內(nèi)部工作原理。但是我覺得對(duì)于有追求的數(shù)據(jù)科學(xué)家來說,理解內(nèi)部原理是非常有益的。

這種練習(xí)對(duì)我自己來說已成成為重要的時(shí)間投入,希望也能對(duì)你有所幫助

交叉熵?fù)p失函數(shù)是什么?

平滑函數(shù)。

交叉熵?fù)p失函數(shù),也稱為對(duì)數(shù)損失或者logistic損失。當(dāng)模型產(chǎn)生了預(yù)測(cè)值之后,將對(duì)類別的預(yù)測(cè)概率與真實(shí)值(由0或1組成)進(jìn)行不比較,計(jì)算所產(chǎn)生的損失,然后基于此損失設(shè)置對(duì)數(shù)形式的懲罰項(xiàng)。

在神經(jīng)網(wǎng)絡(luò)中,所使用的Softmax函數(shù)是連續(xù)可導(dǎo)函數(shù),這使得可以計(jì)算出損失函數(shù)相對(duì)于神經(jīng)網(wǎng)絡(luò)中每個(gè)權(quán)重的導(dǎo)數(shù)(在《機(jī)器學(xué)習(xí)數(shù)學(xué)基礎(chǔ)》中有對(duì)此的完整推導(dǎo)過程和案例,這樣就可以相應(yīng)地調(diào)整模型的權(quán)重以最小化損失函數(shù)。

擴(kuò)展資料:

注意事項(xiàng):

當(dāng)預(yù)測(cè)類別為二分類時(shí),交叉熵?fù)p失函數(shù)的計(jì)算公式如下圖,其中y是真實(shí)類別(值為0或1),p是預(yù)測(cè)類別的概率(值為0~1之間的小數(shù))。

計(jì)算二分類的交叉熵?fù)p失函數(shù)的python代碼如下圖,其中esp是一個(gè)極小值,第五行代碼clip的目的是保證預(yù)測(cè)概率的值在0~1之間,輸出的損失值數(shù)組求和后,就是損失函數(shù)最后的返回值。

參考資料來源:百度百科-交叉熵

參考資料來源:百度百科-損失函數(shù)

Pytorch常用的交叉熵?fù)p失函數(shù)CrossEntropyLoss()詳解

????在使用pytorch深度學(xué)習(xí)框架,計(jì)算損失函數(shù)的時(shí)候經(jīng)常回到這么一個(gè)個(gè)函數(shù):

????該損失函數(shù)結(jié)合了 和 兩個(gè)函數(shù)。它在做分類(具體幾類)訓(xùn)練的時(shí)候是非常有用的。在訓(xùn)練過程中,對(duì)于每個(gè)類分配權(quán)值,可選的參數(shù)權(quán)值應(yīng)該是一個(gè)1D張量。當(dāng)你有一個(gè)不平衡的訓(xùn)練集時(shí),這是是非常有用的。那么針對(duì)這個(gè)函數(shù),下面將做詳細(xì)的介紹。

???? 交叉熵主要是用來判定實(shí)際的輸出與期望的輸出的接近程度 ,為什么這么說呢,舉個(gè)例子:在做分類的訓(xùn)練的時(shí)候,如果一個(gè)樣本屬于第K類,那么這個(gè)類別所對(duì)應(yīng)的的輸出節(jié)點(diǎn)的輸出值應(yīng)該為1,而其他節(jié)點(diǎn)的輸出都為0,即[0,0,1,0,….0,0],這個(gè)數(shù)組也就是樣本的Label,是神經(jīng)網(wǎng)絡(luò)最期望的輸出結(jié)果。也就是說用它來衡量網(wǎng)絡(luò)的輸出與標(biāo)簽的差異,利用這種差異經(jīng)過反向傳播去更新網(wǎng)絡(luò)參數(shù)。

在說交叉熵之前,先說一下 信息量 與 熵 。

???? 信息量: 它是用來衡量一個(gè)事件的不確定性的;一個(gè)事件發(fā)生的概率越大,不確定性越小,則它所攜帶的信息量就越小。假設(shè)X是一個(gè)離散型隨機(jī)變量,其取值集合為X,概率分布函數(shù)為 ,我們定義事件 的信息量為:

當(dāng) 時(shí),熵將等于0,也就是說該事件的發(fā)生不會(huì)導(dǎo)致任何信息量的增加。

???? 熵: 它是用來衡量一個(gè)系統(tǒng)的混亂程度的,代表一個(gè)系統(tǒng)中信息量的總和;信息量總和越大,表明這個(gè)系統(tǒng)不確定性就越大。

????舉個(gè)例子:假如小明和小王去打靶,那么打靶結(jié)果其實(shí)是一個(gè)0-1分布,X的取值有{0:打中,1:打不中}。在打靶之前我們知道小明和小王打中的先驗(yàn)概率為10%,99.9%。根據(jù)上面的信息量的介紹,我們可以分別得到小明和小王打靶打中的信息量。但是如果我們想進(jìn)一步度量小明打靶結(jié)果的不確定度,這就需要用到熵的概念了。那么如何度量呢,那就要采用 期望 了。我們對(duì)所有可能事件所帶來的信息量求期望,其結(jié)果就能衡量小明打靶的不確定度:

與之對(duì)應(yīng)的,小王的熵(打靶的不確定度)為: ????雖然小明打靶結(jié)果的不確定度較低,畢竟十次有9次都脫靶;但是小王打靶結(jié)果的不確定度更低,1000次射擊只有1次脫靶,結(jié)果相當(dāng)?shù)拇_定。

???? 交叉熵: 它主要刻畫的是實(shí)際輸出(概率)與期望輸出(概率)的距離,也就是交叉熵的值越小,兩個(gè)概率分布就越接近。假設(shè)概率分布p為期望輸出,概率分布q為實(shí)際輸出, 為交叉熵,則 ????那么該公式如何表示,舉個(gè)例子,假設(shè)N=3,期望輸出為 ,實(shí)際輸出 , ,那么: 通過上面可以看出,q2與p更為接近,它的交叉熵也更小。

????Pytorch中計(jì)算的交叉熵并不是采用 這種方式計(jì)算得到的,而是交叉熵的另外一種方式計(jì)算得到的: 它是交叉熵的另外一種方式。

????Pytorch中CrossEntropyLoss()函數(shù)的主要是將softmax-log-NLLLoss合并到一塊得到的結(jié)果。

????1、Softmax后的數(shù)值都在0~1之間,所以ln之后值域是負(fù)無窮到0。

????2、然后將Softmax之后的結(jié)果取log,將乘法改成加法減少計(jì)算量,同時(shí)保障函數(shù)的單調(diào)性

????3、NLLLoss的結(jié)果就是把上面的輸出與Label對(duì)應(yīng)的那個(gè)值拿出來(下面例子中就是:將log_output\logsoftmax_output中與y_target對(duì)應(yīng)的值拿出來),去掉負(fù)號(hào),再求均值。

下面是我仿真寫的一個(gè)例子:

最計(jì)算得到的結(jié)果為:

????通過上面的結(jié)果可以看出,直接使用pytorch中的loss_func=nn.CrossEntropyLoss()計(jì)算得到的結(jié)果與softmax-log-NLLLoss計(jì)算得到的結(jié)果是一致的。

[1]

[2]

[3]

更多自然語(yǔ)言處理、pytorch相關(guān)知識(shí),還請(qǐng)關(guān)注 AINLPer 公眾號(hào),極品干貨即刻送達(dá)。

當(dāng)前文章:計(jì)算損失函數(shù)Python的簡(jiǎn)單介紹
本文地址:http://chinadenli.net/article34/hpjsse.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供定制開發(fā)小程序開發(fā)網(wǎng)站設(shè)計(jì)公司網(wǎng)站改版用戶體驗(yàn)移動(dòng)網(wǎng)站建設(shè)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來源: 創(chuàng)新互聯(lián)

綿陽(yáng)服務(wù)器托管