數(shù)學(xué)算法都是一樣的,本身計(jì)算機(jī)算法就是建立在數(shù)學(xué)的基礎(chǔ)上的.

網(wǎng)站建設(shè)公司,為您提供網(wǎng)站建設(shè),網(wǎng)站制作,網(wǎng)頁(yè)設(shè)計(jì)及定制網(wǎng)站建設(shè)服務(wù),專注于成都定制網(wǎng)頁(yè)設(shè)計(jì),高端網(wǎng)頁(yè)制作,對(duì)攪拌罐車(chē)等多個(gè)行業(yè)擁有豐富的網(wǎng)站建設(shè)經(jīng)驗(yàn)的網(wǎng)站建設(shè)公司。專業(yè)網(wǎng)站設(shè)計(jì),網(wǎng)站優(yōu)化推廣哪家好,專業(yè)成都網(wǎng)站推廣優(yōu)化,H5建站,響應(yīng)式網(wǎng)站。
一、什么是算法
算法是一系列解決問(wèn)題的清晰指令,也就是說(shuō),能夠?qū)σ欢ㄒ?guī)范的輸入,在有限時(shí)間內(nèi)獲得所要求的輸出。算法常常含有重復(fù)的步驟和一些比較或邏輯判斷。如果一個(gè)算法有缺陷,或不適合于某個(gè)問(wèn)題,執(zhí)行這個(gè)算法將不會(huì)解決這個(gè)問(wèn)題。不同的算法可能用不同的時(shí)間、空間或效率來(lái)完成同樣的任務(wù)。一個(gè)算法的優(yōu)劣可以用空間復(fù)雜度與時(shí)間復(fù)雜度來(lái)衡量。
算法的時(shí)間復(fù)雜度是指算法需要消耗的時(shí)間資源。一般來(lái)說(shuō),計(jì)算機(jī)算法是問(wèn)題規(guī)模n 的函數(shù)f(n),算法執(zhí)行的時(shí)間的增長(zhǎng)率與f(n) 的增長(zhǎng)率正相關(guān),稱作漸進(jìn)時(shí)間復(fù)雜度(Asymptotic Time Complexity)。時(shí)間復(fù)雜度用“O(數(shù)量級(jí))”來(lái)表示,稱為“階”。常見(jiàn)的時(shí)間復(fù)雜度有: O(1)常數(shù)階;O(log2n)對(duì)數(shù)階;O(n)線性階;O(n2)平方階。
算法的空間復(fù)雜度是指算法需要消耗的空間資源。其計(jì)算和表示方法與時(shí)間復(fù)雜度類(lèi)似,一般都用復(fù)雜度的漸近性來(lái)表示。同時(shí)間復(fù)雜度相比,空間復(fù)雜度的分析要簡(jiǎn)單得多。
二、算法設(shè)計(jì)的方法
1.遞推法
遞推法是利用問(wèn)題本身所具有的一種遞推關(guān)系求問(wèn)題解的一種方法。設(shè)要求問(wèn)題規(guī)模為N的解,當(dāng)N=1時(shí),解或?yàn)橐阎蚰芊浅7奖愕氐玫浇狻D懿捎眠f推法構(gòu)造算法的問(wèn)題有重要的遞推性質(zhì),即當(dāng)?shù)玫絾?wèn)題規(guī)模為i-1的解后,由問(wèn)題的遞推性質(zhì),能從已求得的規(guī)模為1,2,…,i-1的一系列解,構(gòu)造出問(wèn)題規(guī)模為I的解。這樣,程序可從i=0或i=1出發(fā),重復(fù)地,由已知至i-1規(guī)模的解,通過(guò)遞推,獲得規(guī)模為i的解,直至得到規(guī)模為N的解。
【問(wèn)題】 階乘計(jì)算
問(wèn)題描述:編寫(xiě)程序,對(duì)給定的n(n≤100),計(jì)算并輸出k的階乘k!(k=1,2,…,n)的全部有效數(shù)字。
由于要求的整數(shù)可能大大超出一般整數(shù)的位數(shù),程序用一維數(shù)組存儲(chǔ)長(zhǎng)整數(shù),存儲(chǔ)長(zhǎng)整數(shù)數(shù)組的每個(gè)元素只存儲(chǔ)長(zhǎng)整數(shù)的一位數(shù)字。如有m位成整數(shù)N用數(shù)組a[ ]存儲(chǔ):
N=a[m]×10m-1+a[m-1]×10m-2+ … +a[2]×101+a[1]×100
并用a[0]存儲(chǔ)長(zhǎng)整數(shù)N的位數(shù)m,即a[0]=m。按上述約定,數(shù)組的每個(gè)元素存儲(chǔ)k的階乘k!的一位數(shù)字,并從低位到高位依次存于數(shù)組的第二個(gè)元素、第三個(gè)元素……。例如,5!=120,在數(shù)組中的存儲(chǔ)形式為:
3 0 2 1 ……
首元素3表示長(zhǎng)整數(shù)是一個(gè)3位數(shù),接著是低位到高位依次是0、2、1,表示成整數(shù)120。
計(jì)算階乘k!可采用對(duì)已求得的階乘(k-1)!連續(xù)累加k-1次后求得。例如,已知4!=24,計(jì)算5!,可對(duì)原來(lái)的24累加4次24后得到120。細(xì)節(jié)見(jiàn)以下程序。
# include stdio.h
# include malloc.h
......
2.遞歸
遞歸是設(shè)計(jì)和描述算法的一種有力的工具,由于它在復(fù)雜算法的描述中被經(jīng)常采用,為此在進(jìn)一步介紹其他算法設(shè)計(jì)方法之前先討論它。
能采用遞歸描述的算法通常有這樣的特征:為求解規(guī)模為N的問(wèn)題,設(shè)法將它分解成規(guī)模較小的問(wèn)題,然后從這些小問(wèn)題的解方便地構(gòu)造出大問(wèn)題的解,并且這些規(guī)模較小的問(wèn)題也能采用同樣的分解和綜合方法,分解成規(guī)模更小的問(wèn)題,并從這些更小問(wèn)題的解構(gòu)造出規(guī)模較大問(wèn)題的解。特別地,當(dāng)規(guī)模N=1時(shí),能直接得解。
【問(wèn)題】 編寫(xiě)計(jì)算斐波那契(Fibonacci)數(shù)列的第n項(xiàng)函數(shù)fib(n)。
斐波那契數(shù)列為:0、1、1、2、3、……,即:
fib(0)=0;
fib(1)=1;
fib(n)=fib(n-1)+fib(n-2) (當(dāng)n1時(shí))。
寫(xiě)成遞歸函數(shù)有:
int fib(int n)
{ if (n==0) return 0;
if (n==1) return 1;
if (n1) return fib(n-1)+fib(n-2);
}
遞歸算法的執(zhí)行過(guò)程分遞推和回歸兩個(gè)階段。在遞推階段,把較復(fù)雜的問(wèn)題(規(guī)模為n)的求解推到比原問(wèn)題簡(jiǎn)單一些的問(wèn)題(規(guī)模小于n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是說(shuō),為計(jì)算fib(n),必須先計(jì)算fib(n-1)和fib(n-2),而計(jì)算fib(n-1)和fib(n-2),又必須先計(jì)算fib(n-3)和fib(n-4)。依次類(lèi)推,直至計(jì)算fib(1)和fib(0),分別能立即得到結(jié)果1和0。在遞推階段,必須要有終止遞歸的情況。例如在函數(shù)fib中,當(dāng)n為1和0的情況。
在回歸階段,當(dāng)獲得最簡(jiǎn)單情況的解后,逐級(jí)返回,依次得到稍復(fù)雜問(wèn)題的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的結(jié)果,……,在得到了fib(n-1)和fib(n-2)的結(jié)果后,返回得到fib(n)的結(jié)果。
在編寫(xiě)遞歸函數(shù)時(shí)要注意,函數(shù)中的局部變量和參數(shù)知識(shí)局限于當(dāng)前調(diào)用層,當(dāng)遞推進(jìn)入“簡(jiǎn)單問(wèn)題”層時(shí),原來(lái)層次上的參數(shù)和局部變量便被隱蔽起來(lái)。在一系列“簡(jiǎn)單問(wèn)題”層,它們各有自己的參數(shù)和局部變量。
由于遞歸引起一系列的函數(shù)調(diào)用,并且可能會(huì)有一系列的重復(fù)計(jì)算,遞歸算法的執(zhí)行效率相對(duì)較低。當(dāng)某個(gè)遞歸算法能較方便地轉(zhuǎn)換成遞推算法時(shí),通常按遞推算法編寫(xiě)程序。例如上例計(jì)算斐波那契數(shù)列的第n項(xiàng)的函數(shù)fib(n)應(yīng)采用遞推算法,即從斐波那契數(shù)列的前兩項(xiàng)出發(fā),逐次由前兩項(xiàng)計(jì)算出下一項(xiàng),直至計(jì)算出要求的第n項(xiàng)。
【問(wèn)題】 組合問(wèn)題
問(wèn)題描述:找出從自然數(shù)1、2、……、n中任取r個(gè)數(shù)的所有組合。例如n=5,r=3的所有組合為: (1)5、4、3 (2)5、4、2 (3)5、4、1
(4)5、3、2 (5)5、3、1 (6)5、2、1
(7)4、3、2 (8)4、3、1 (9)4、2、1
(10)3、2、1
分析所列的10個(gè)組合,可以采用這樣的遞歸思想來(lái)考慮求組合函數(shù)的算法。設(shè)函數(shù)為void comb(int m,int k)為找出從自然數(shù)1、2、……、m中任取k個(gè)數(shù)的所有組合。當(dāng)組合的第一個(gè)數(shù)字選定時(shí),其后的數(shù)字是從余下的m-1個(gè)數(shù)中取k-1數(shù)的組合。這就將求m個(gè)數(shù)中取k個(gè)數(shù)的組合問(wèn)題轉(zhuǎn)化成求m-1個(gè)數(shù)中取k-1個(gè)數(shù)的組合問(wèn)題。設(shè)函數(shù)引入工作數(shù)組a[ ]存放求出的組合的數(shù)字,約定函數(shù)將確定的k個(gè)數(shù)字組合的第一個(gè)數(shù)字放在a[k]中,當(dāng)一個(gè)組合求出后,才將a[ ]中的一個(gè)組合輸出。第一個(gè)數(shù)可以是m、m-1、……、k,函數(shù)將確定組合的第一個(gè)數(shù)字放入數(shù)組后,有兩種可能的選擇,因還未去頂組合的其余元素,繼續(xù)遞歸去確定;或因已確定了組合的全部元素,輸出這個(gè)組合。細(xì)節(jié)見(jiàn)以下程序中的函數(shù)comb。
【程序】
# include stdio.h
# define MAXN 100
int a[MAXN];
void comb(int m,int k)
{ int i,j;
for (i=m;i=k;i--)
{ a[k]=i;
if (k1)
comb(i-1,k-1);
else
{ for (j=a[0];j0;j--)
printf(“%4d”,a[j]);
printf(“\n”);
}
}
}
void main()
{ a[0]=3;
comb(5,3);
}
3.回溯法
回溯法也稱為試探法,該方法首先暫時(shí)放棄關(guān)于問(wèn)題規(guī)模大小的限制,并將問(wèn)題的候選解按某種順序逐一枚舉和檢驗(yàn)。當(dāng)發(fā)現(xiàn)當(dāng)前候選解不可能是解時(shí),就選擇下一個(gè)候選解;倘若當(dāng)前候選解除了還不滿足問(wèn)題規(guī)模要求外,滿足所有其他要求時(shí),繼續(xù)擴(kuò)大當(dāng)前候選解的規(guī)模,并繼續(xù)試探。如果當(dāng)前候選解滿足包括問(wèn)題規(guī)模在內(nèi)的所有要求時(shí),該候選解就是問(wèn)題的一個(gè)解。在回溯法中,放棄當(dāng)前候選解,尋找下一個(gè)候選解的過(guò)程稱為回溯。擴(kuò)大當(dāng)前候選解的規(guī)模,以繼續(xù)試探的過(guò)程稱為向前試探。
【問(wèn)題】 組合問(wèn)題
問(wèn)題描述:找出從自然數(shù)1,2,…,n中任取r個(gè)數(shù)的所有組合。
采用回溯法找問(wèn)題的解,將找到的組合以從小到大順序存于a[0],a[1],…,a[r-1]中,組合的元素滿足以下性質(zhì):
(1) a[i+1]a,后一個(gè)數(shù)字比前一個(gè)大;
(2) a-i=n-r+1。
按回溯法的思想,找解過(guò)程可以敘述如下:
首先放棄組合數(shù)個(gè)數(shù)為r的條件,候選組合從只有一個(gè)數(shù)字1開(kāi)始。因該候選解滿足除問(wèn)題規(guī)模之外的全部條件,擴(kuò)大其規(guī)模,并使其滿足上述條件(1),候選組合改為1,2。繼續(xù)這一過(guò)程,得到候選組合1,2,3。該候選解滿足包括問(wèn)題規(guī)模在內(nèi)的全部條件,因而是一個(gè)解。在該解的基礎(chǔ)上,選下一個(gè)候選解,因a[2]上的3調(diào)整為4,以及以后調(diào)整為5都滿足問(wèn)題的全部要求,得到解1,2,4和1,2,5。由于對(duì)5不能再作調(diào)整,就要從a[2]回溯到a[1],這時(shí),a[1]=2,可以調(diào)整為3,并向前試探,得到解1,3,4。重復(fù)上述向前試探和向后回溯,直至要從a[0]再回溯時(shí),說(shuō)明已經(jīng)找完問(wèn)題的全部解。按上述思想寫(xiě)成程序如下:
【程序】
# define MAXN 100
int a[MAXN];
void comb(int m,int r)
{ int i,j;
i=0;
a=1;
do {
if (a-i=m-r+1
{ if (i==r-1)
{ for (j=0;jr;j++)
printf(“%4d”,a[j]);
printf(“\n”);
}
a++;
continue;
}
else
{ if (i==0)
return;
a[--i]++;
}
} while (1)
}
main()
{ comb(5,3);
}
4.貪婪法
貪婪法是一種不追求最優(yōu)解,只希望得到較為滿意解的方法。貪婪法一般可以快速得到滿意的解,因?yàn)樗∪チ藶檎易顑?yōu)解要窮盡所有可能而必須耗費(fèi)的大量時(shí)間。貪婪法常以當(dāng)前情況為基礎(chǔ)作最優(yōu)選擇,而不考慮各種可能的整體情況,所以貪婪法不要回溯。
例如平時(shí)購(gòu)物找錢(qián)時(shí),為使找回的零錢(qián)的硬幣數(shù)最少,不考慮找零錢(qián)的所有各種發(fā)表方案,而是從最大面值的幣種開(kāi)始,按遞減的順序考慮各幣種,先盡量用大面值的幣種,當(dāng)不足大面值幣種的金額時(shí)才去考慮下一種較小面值的幣種。這就是在使用貪婪法。這種方法在這里總是最優(yōu),是因?yàn)殂y行對(duì)其發(fā)行的硬幣種類(lèi)和硬幣面值的巧妙安排。如只有面值分別為1、5和11單位的硬幣,而希望找回總額為15單位的硬幣。按貪婪算法,應(yīng)找1個(gè)11單位面值的硬幣和4個(gè)1單位面值的硬幣,共找回5個(gè)硬幣。但最優(yōu)的解應(yīng)是3個(gè)5單位面值的硬幣。
【問(wèn)題】 裝箱問(wèn)題
問(wèn)題描述:裝箱問(wèn)題可簡(jiǎn)述如下:設(shè)有編號(hào)為0、1、…、n-1的n種物品,體積分別為v0、v1、…、vn-1。將這n種物品裝到容量都為V的若干箱子里。約定這n種物品的體積均不超過(guò)V,即對(duì)于0≤i<n,有0<vi≤V。不同的裝箱方案所需要的箱子數(shù)目可能不同。裝箱問(wèn)題要求使裝盡這n種物品的箱子數(shù)要少。
若考察將n種物品的集合分劃成n個(gè)或小于n個(gè)物品的所有子集,最優(yōu)解就可以找到。但所有可能劃分的總數(shù)太大。對(duì)適當(dāng)大的n,找出所有可能的劃分要花費(fèi)的時(shí)間是無(wú)法承受的。為此,對(duì)裝箱問(wèn)題采用非常簡(jiǎn)單的近似算法,即貪婪法。該算法依次將物品放到它第一個(gè)能放進(jìn)去的箱子中,該算法雖不能保證找到最優(yōu)解,但還是能找到非常好的解。不失一般性,設(shè)n件物品的體積是按從大到小排好序的,即有v0≥v1≥…≥vn-1。如不滿足上述要求,只要先對(duì)這n件物品按它們的體積從大到小排序,然后按排序結(jié)果對(duì)物品重新編號(hào)即可。裝箱算法簡(jiǎn)單描述如下:
{ 輸入箱子的容積;
輸入物品種數(shù)n;
按體積從大到小順序,輸入各物品的體積;
預(yù)置已用箱子鏈為空;
預(yù)置已用箱子計(jì)數(shù)器box_count為0;
for (i=0;in;i++)
{ 從已用的第一只箱子開(kāi)始順序?qū)ふ夷芊湃胛锲穒 的箱子j;
if (已用箱子都不能再放物品i)
{ 另用一個(gè)箱子,并將物品i放入該箱子;
box_count++;
}
else
將物品i放入箱子j;
}
}
上述算法能求出需要的箱子數(shù)box_count,并能求出各箱子所裝物品。下面的例子說(shuō)明該算法不一定能找到最優(yōu)解,設(shè)有6種物品,它們的體積分別為:60、45、35、20、20和20單位體積,箱子的容積為100個(gè)單位體積。按上述算法計(jì)算,需三只箱子,各箱子所裝物品分別為:第一只箱子裝物品1、3;第二只箱子裝物品2、4、5;第三只箱子裝物品6。而最優(yōu)解為兩只箱子,分別裝物品1、4、5和2、3、6。
若每只箱子所裝物品用鏈表來(lái)表示,鏈表首結(jié)點(diǎn)指針存于一個(gè)結(jié)構(gòu)中,結(jié)構(gòu)記錄尚剩余的空間量和該箱子所裝物品鏈表的首指針。另將全部箱子的信息也構(gòu)成鏈表。以下是按以上算法編寫(xiě)的程序。
}
5.分治法
任何一個(gè)可以用計(jì)算機(jī)求解的問(wèn)題所需的計(jì)算時(shí)間都與其規(guī)模N有關(guān)。問(wèn)題的規(guī)模越小,越容易直接求解,解題所需的計(jì)算時(shí)間也越少。例如,對(duì)于n個(gè)元素的排序問(wèn)題,當(dāng)n=1時(shí),不需任何計(jì)算;n=2時(shí),只要作一次比較即可排好序;n=3時(shí)只要作3次比較即可,…。而當(dāng)n較大時(shí),問(wèn)題就不那么容易處理了。要想直接解決一個(gè)規(guī)模較大的問(wèn)題,有時(shí)是相當(dāng)困難的。
分治法的設(shè)計(jì)思想是,將一個(gè)難以直接解決的大問(wèn)題,分割成一些規(guī)模較小的相同問(wèn)題,以便各個(gè)擊破,分而治之。
如果原問(wèn)題可分割成k個(gè)子問(wèn)題(1k≤n),且這些子問(wèn)題都可解,并可利用這些子問(wèn)題的解求出原問(wèn)題的解,那么這種分治法就是可行的。由分治法產(chǎn)生的子問(wèn)題往往是原問(wèn)題的較小模式,這就為使用遞歸技術(shù)提供了方便。在這種情況下,反復(fù)應(yīng)用分治手段,可以使子問(wèn)題與原問(wèn)題類(lèi)型一致而其規(guī)模卻不斷縮小,最終使子問(wèn)題縮小到很容易直接求出其解。這自然導(dǎo)致遞歸過(guò)程的產(chǎn)生。分治與遞歸像一對(duì)孿生兄弟,經(jīng)常同時(shí)應(yīng)用在算法設(shè)計(jì)之中,并由此產(chǎn)生許多高效算法。
分治法所能解決的問(wèn)題一般具有以下幾個(gè)特征:
(1)該問(wèn)題的規(guī)模縮小到一定的程度就可以容易地解決;
(2)該問(wèn)題可以分解為若干個(gè)規(guī)模較小的相同問(wèn)題,即該問(wèn)題具有最優(yōu)子結(jié)構(gòu)性質(zhì);
(3)利用該問(wèn)題分解出的子問(wèn)題的解可以合并為該問(wèn)題的解;
(4)該問(wèn)題所分解出的各個(gè)子問(wèn)題是相互獨(dú)立的,即子問(wèn)題之間不包含公共的子子問(wèn)題。
上述的第一條特征是絕大多數(shù)問(wèn)題都可以滿足的,因?yàn)閱?wèn)題的計(jì)算復(fù)雜性一般是隨著問(wèn)題規(guī)模的增加而增加;第二條特征是應(yīng)用分治法的前提,它也是大多數(shù)問(wèn)題可以滿足的,此特征反映了遞歸思想的應(yīng)用;第三條特征是關(guān)鍵,能否利用分治法完全取決于問(wèn)題是否具有第三條特征,如果具備了第一條和第二條特征,而不具備第三條特征,則可以考慮貪心法或動(dòng)態(tài)規(guī)劃法。第四條特征涉及到分治法的效率,如果各子問(wèn)題是不獨(dú)立的,則分治法要做許多不必要的工作,重復(fù)地解公共的子問(wèn)題,此時(shí)雖然可用分治法,但一般用動(dòng)態(tài)規(guī)劃法較好。
分治法在每一層遞歸上都有三個(gè)步驟:
(1)分解:將原問(wèn)題分解為若干個(gè)規(guī)模較小,相互獨(dú)立,與原問(wèn)題形式相同的子問(wèn)題;
(2)解決:若子問(wèn)題規(guī)模較小而容易被解決則直接解,否則遞歸地解各個(gè)子問(wèn)題;
(3)合并:將各個(gè)子問(wèn)題的解合并為原問(wèn)題的解。
6.動(dòng)態(tài)規(guī)劃法
經(jīng)常會(huì)遇到復(fù)雜問(wèn)題不能簡(jiǎn)單地分解成幾個(gè)子問(wèn)題,而會(huì)分解出一系列的子問(wèn)題。簡(jiǎn)單地采用把大問(wèn)題分解成子問(wèn)題,并綜合子問(wèn)題的解導(dǎo)出大問(wèn)題的解的方法,問(wèn)題求解耗時(shí)會(huì)按問(wèn)題規(guī)模呈冪級(jí)數(shù)增加。
為了節(jié)約重復(fù)求相同子問(wèn)題的時(shí)間,引入一個(gè)數(shù)組,不管它們是否對(duì)最終解有用,把所有子問(wèn)題的解存于該數(shù)組中,這就是動(dòng)態(tài)規(guī)劃法所采用的基本方法。以下先用實(shí)例說(shuō)明動(dòng)態(tài)規(guī)劃方法的使用。
【問(wèn)題】 求兩字符序列的最長(zhǎng)公共字符子序列
問(wèn)題描述:字符序列的子序列是指從給定字符序列中隨意地(不一定連續(xù))去掉若干個(gè)字符(可能一個(gè)也不去掉)后所形成的字符序列。令給定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一個(gè)嚴(yán)格遞增下標(biāo)序列i0,i1,…,ik-1,使得對(duì)所有的j=0,1,…,k-1,有xij=yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一個(gè)子序列。
考慮最長(zhǎng)公共子序列問(wèn)題如何分解成子問(wèn)題,設(shè)A=“a0,a1,…,am-1”,B=“b0,b1,…,bm-1”,并Z=“z0,z1,…,zk-1”為它們的最長(zhǎng)公共子序列。不難證明有以下性質(zhì):
(1) 如果am-1=bn-1,則zk-1=am-1=bn-1,且“z0,z1,…,zk-2”是“a0,a1,…,am-2”和“b0,b1,…,bn-2”的一個(gè)最長(zhǎng)公共子序列;
(2) 如果am-1!=bn-1,則若zk-1!=am-1,蘊(yùn)涵“z0,z1,…,zk-1”是“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一個(gè)最長(zhǎng)公共子序列;
(3) 如果am-1!=bn-1,則若zk-1!=bn-1,蘊(yùn)涵“z0,z1,…,zk-1”是“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一個(gè)最長(zhǎng)公共子序列。
這樣,在找A和B的公共子序列時(shí),如有am-1=bn-1,則進(jìn)一步解決一個(gè)子問(wèn)題,找“a0,a1,…,am-2”和“b0,b1,…,bm-2”的一個(gè)最長(zhǎng)公共子序列;如果am-1!=bn-1,則要解決兩個(gè)子問(wèn)題,找出“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一個(gè)最長(zhǎng)公共子序列和找出“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一個(gè)最長(zhǎng)公共子序列,再取兩者中較長(zhǎng)者作為A和B的最長(zhǎng)公共子序列。
代碼如下:
# include stdio.h
# include string.h
# define N 100
char a[N],b[N],str[N];
int lcs_len(char *a, char *b, int c[ ][ N])
{ int m=strlen(a), n=strlen(b), i,j;
for (i=0;i=m;i++) c[0]=0;
for (i=0;i=n;i++) c[0]=0;
for (i=1;i=m;i++)
for (j=1;j=m;j++)
if (a[i-1]==b[j-1])
c[j]=c[i-1][j-1]+1;
else if (c[i-1][j]=c[j-1])
c[j]=c[i-1][j];
else
c[j]=c[j-1];
return c[m][n];
}
char *buile_lcs(char s[ ],char *a, char *b)
{ int k, i=strlen(a), j=strlen(b);
k=lcs_len(a,b,c);
s[k]=’’;
while (k0)
if (c[j]==c[i-1][j]) i--;
else if (c[j]==c[j-1]) j--;
else { s[--k]=a[i-1];
i--; j--;
}
return s;
}
void main()
{ printf (“Enter two string(%d)!\n”,N);
scanf(“%s%s”,a,b);
printf(“LCS=%s\n”,build_lcs(str,a,b));
}
7.迭代法
迭代法是用于求方程或方程組近似根的一種常用的算法設(shè)計(jì)方法。設(shè)方程為f(x)=0,用某種數(shù)學(xué)方法導(dǎo)出等價(jià)的形式x=g(x),然后按以下步驟執(zhí)行:
(1) 選一個(gè)方程的近似根,賦給變量x0;
(2) 將x0的值保存于變量x1,然后計(jì)算g(x1),并將結(jié)果存于變量x0;
(3) 當(dāng)x0與x1的差的絕對(duì)值還小于指定的精度要求時(shí),重復(fù)步驟(2)的計(jì)算。
若方程有根,并且用上述方法計(jì)算出來(lái)的近似根序列收斂,則按上述方法求得的x0就認(rèn)為是方程的根。上述算法用C程序的形式表示為:
程序如下:
【算法】迭代法求方程組的根
{ for (i=0;in;i++)
x=初始近似根;
do {
for (i=0;in;i++)
y = x;
for (i=0;in;i++)
x = gi(X);
for (delta=0.0,i=0;in;i++)
if (fabs(y-x)delta) delta=fabs(y-x); } while (deltaEpsilon);
for (i=0;in;i++)
printf(“變量x[%d]的近似根是 %f”,I,x);
printf(“\n”);
} 具體使用迭代法求根時(shí)應(yīng)注意以下兩種可能發(fā)生的情況:
(1)如果方程無(wú)解,算法求出的近似根序列就不會(huì)收斂,迭代過(guò)程會(huì)變成死循環(huán),因此在使用迭代算法前應(yīng)先考察方程是否有解,并在程序中對(duì)迭代的次數(shù)給予限制;
(2)方程雖然有解,但迭代公式選擇不當(dāng),或迭代的初始近似根選擇不合理,也會(huì)導(dǎo)致迭代失敗。
8.窮舉搜索法
窮舉搜索法是對(duì)可能是解的眾多候選解按某種順序進(jìn)行逐一枚舉和檢驗(yàn),并從眾找出那些符合要求的候選解作為問(wèn)題的解。
【問(wèn)題】 將A、B、C、D、E、F這六個(gè)變量排成如圖所示的三角形,這六個(gè)變量分別取[1,6]上的整數(shù),且均不相同。求使三角形三條邊上的變量之和相等的全部解。如圖就是一個(gè)解。
程序引入變量a、b、c、d、e、f,并讓它們分別順序取1至6的整數(shù),在它們互不相同的條件下,測(cè)試由它們排成的如圖所示的三角形三條邊上的變量之和是否相等,如相等即為一種滿足要求的排列,把它們輸出。當(dāng)這些變量取盡所有的組合后,程序就可得到全部可能的解。程序如下:
按窮舉法編寫(xiě)的程序通常不能適應(yīng)變化的情況。如問(wèn)題改成有9個(gè)變量排成三角形,每條邊有4個(gè)變量的情況,程序的循環(huán)重?cái)?shù)就要相應(yīng)改變。
算法是實(shí)現(xiàn)某種功能的思路
數(shù)據(jù)結(jié)構(gòu)是數(shù)據(jù)的組織方式
函數(shù)是。。。我也不知道怎么講,
函數(shù)是數(shù)學(xué)名詞,代數(shù)式中,凡相關(guān)的兩數(shù)X與Y,對(duì)于每個(gè)X值,都只有一個(gè)Y的對(duì)應(yīng)值。這種對(duì)應(yīng)關(guān)系就表示Y是X的函數(shù)。
函數(shù)(function)的定義通常分為傳統(tǒng)定義和近代定義,函數(shù)的兩個(gè)定義本質(zhì)是相同的,只是敘述概念的出發(fā)點(diǎn)不同,傳統(tǒng)定義是從運(yùn)動(dòng)變化的觀點(diǎn)出發(fā),而近代定義是從集合、映射的觀點(diǎn)出發(fā)。
函數(shù)的近代定義是給定一個(gè)數(shù)集A,假設(shè)其中的元素為x,對(duì)A中的元素x施加對(duì)應(yīng)法則f,記作f(x),得到另一數(shù)集B,假設(shè)B中的元素為y,則y與x之間的等量關(guān)系可以用y=f(x)表示,函數(shù)概念含有三個(gè)要素:定義域A、值域B和對(duì)應(yīng)法則f。其中核心是對(duì)應(yīng)法則f,它是函數(shù)關(guān)系的本質(zhì)特征。
函數(shù),最早由中國(guó)清朝數(shù)學(xué)家李善蘭翻譯,出于其著作《代數(shù)學(xué)》。之所以這么翻譯,他給出的原因是“凡此變數(shù)中函彼變數(shù)者,則此為彼之函數(shù)”,也即函數(shù)指一個(gè)量隨著另一個(gè)量的變化而變化,或者說(shuō)一個(gè)量。
c語(yǔ)言中的算法是指:一系列解決問(wèn)題的清晰指令,用系統(tǒng)的方法描述解決問(wèn)題的策略機(jī)制。也就是說(shuō),能夠?qū)σ欢ㄒ?guī)范的輸入,在有限時(shí)間內(nèi)獲得所要求的輸出。通俗說(shuō)就是解決問(wèn)題的方法和步驟。
描述算法的例子:
問(wèn)題:從上海去到北京。
其中的算法:做汽車(chē)、做飛機(jī)、或者徒步。
問(wèn)題:喝茶。
其中的算法:先找到茶葉,再燒一壺開(kāi)水,然后將茶葉放到杯子里,將開(kāi)水倒入杯中,等茶葉泡好。
問(wèn)題:開(kāi)車(chē)。
其中的算法:首先要打開(kāi)車(chē)門(mén),駕駛員坐好,插上車(chē)鑰匙,發(fā)動(dòng)汽車(chē)。
算法的五個(gè)重要的特征:有窮性(Finiteness)、確切性(Definiteness)、輸入項(xiàng)(Input)、輸出項(xiàng)(Output)、可行性(Effectiveness)。
算法的時(shí)間復(fù)雜度:算法的時(shí)間復(fù)雜度是指執(zhí)行算法所需要的計(jì)算工作量。一般來(lái)說(shuō),計(jì)算機(jī)算法是問(wèn)題規(guī)模n 的函數(shù)f(n),算法的時(shí)間復(fù)雜度也因此記做。T(n)=Ο(f(n))因此,問(wèn)題的規(guī)模n 越大,算法執(zhí)行的時(shí)間的增長(zhǎng)率與f(n) 的增長(zhǎng)率正相關(guān),稱作漸進(jìn)時(shí)間復(fù)雜度(Asymptotic Time Complexity)。
算法的空間復(fù)雜度:算法的空間復(fù)雜度是指算法需要消耗的內(nèi)存空間。其計(jì)算和表示方法與時(shí)間復(fù)雜度類(lèi)似,一般都用復(fù)雜度的漸近性來(lái)表示。同時(shí)間復(fù)雜度相比,空間復(fù)雜度的分析要簡(jiǎn)單得多。可以從正確性、可讀性、健壯性(容錯(cuò)性)來(lái)分析。
一般來(lái)講一個(gè)算法可以用一個(gè)函數(shù)來(lái)實(shí)現(xiàn),也可以用多個(gè)函數(shù)來(lái)實(shí)現(xiàn),所以不能理解一個(gè)算法就是一個(gè)函數(shù)。數(shù)據(jù)結(jié)構(gòu)中的算法都是以函數(shù)的形式來(lái)實(shí)現(xiàn)的
當(dāng)前名稱:c語(yǔ)言中函數(shù)是算法嗎,c語(yǔ)言中什么是算法
文章轉(zhuǎn)載:http://chinadenli.net/article32/dsgeipc.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供品牌網(wǎng)站建設(shè)、外貿(mào)建站、ChatGPT、用戶體驗(yàn)、網(wǎng)站內(nèi)鏈、虛擬主機(jī)
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)