欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

nosql開(kāi)發(fā)電商的簡(jiǎn)單介紹

newsql和nosql的區(qū)別和聯(lián)系

在大數(shù)據(jù)時(shí)代,“多種架構(gòu)支持多類(lèi)應(yīng)用”成為數(shù)據(jù)庫(kù)行業(yè)應(yīng)對(duì)大數(shù)據(jù)的基本思路,數(shù)據(jù)庫(kù)行業(yè)出現(xiàn)互為補(bǔ)充的三大陣營(yíng),適用于事務(wù)處理應(yīng)用的OldSQL、適用于數(shù)據(jù)分析應(yīng)用的NewSQL和適用于互聯(lián)網(wǎng)應(yīng)用的NoSQL。但在一些復(fù)雜的應(yīng)用場(chǎng)景中,單一數(shù)據(jù)庫(kù)架構(gòu)都不能完全滿足應(yīng)用場(chǎng)景對(duì)海量結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)的存儲(chǔ)管理、復(fù)雜分析、關(guān)聯(lián)查詢(xún)、實(shí)時(shí)性處理和控制建設(shè)成本等多方面的需要,因此不同架構(gòu)數(shù)據(jù)庫(kù)混合部署應(yīng)用成為滿足復(fù)雜應(yīng)用的必然選擇。不同架構(gòu)數(shù)據(jù)庫(kù)混合使用的模式可以概括為:OldSQL+NewSQL、OldSQL+NoSQL、NewSQL+NoSQL三種主要模式。下面通過(guò)三個(gè)案例對(duì)不同架構(gòu)數(shù)據(jù)庫(kù)的混合應(yīng)用部署進(jìn)行介紹。

創(chuàng)新互聯(lián)網(wǎng)站建設(shè)提供從項(xiàng)目策劃、軟件開(kāi)發(fā),軟件安全維護(hù)、網(wǎng)站優(yōu)化(SEO)、網(wǎng)站分析、效果評(píng)估等整套的建站服務(wù),主營(yíng)業(yè)務(wù)為網(wǎng)站設(shè)計(jì)制作、成都網(wǎng)站制作,重慶APP軟件開(kāi)發(fā)以傳統(tǒng)方式定制建設(shè)網(wǎng)站,并提供域名空間備案等一條龍服務(wù),秉承以專(zhuān)業(yè)、用心的態(tài)度為用戶(hù)提供真誠(chéng)的服務(wù)。創(chuàng)新互聯(lián)深信只要達(dá)到每一位用戶(hù)的要求,就會(huì)得到認(rèn)可,從而選擇與我們長(zhǎng)期合作。這樣,我們也可以走得更遠(yuǎn)!

OldSQL+NewSQL 在數(shù)據(jù)中心類(lèi)應(yīng)用中混合部署

采用OldSQL+NewSQL模式構(gòu)建數(shù)據(jù)中心,在充分發(fā)揮OldSQL數(shù)據(jù)庫(kù)的事務(wù)處理能力的同時(shí),借助NewSQL在實(shí)時(shí)性、復(fù)雜分析、即席查詢(xún)等方面的獨(dú)特優(yōu)勢(shì),以及面對(duì)海量數(shù)據(jù)時(shí)較強(qiáng)的擴(kuò)展能力,滿足數(shù)據(jù)中心對(duì)當(dāng)前“熱”數(shù)據(jù)事務(wù)型處理和海量歷史“冷”數(shù)據(jù)分析兩方面的需求。OldSQL+NewSQL模式在數(shù)據(jù)中心類(lèi)應(yīng)用中的互補(bǔ)作用體現(xiàn)在,OldSQL彌補(bǔ)了NewSQL不適合事務(wù)處理的不足,NewSQL彌補(bǔ)了OldSQL在海量數(shù)據(jù)存儲(chǔ)能力和處理性能方面的缺陷。

商業(yè)銀行數(shù)據(jù)中心采用OldSQL+NewSQL混合部署方式搭建,OldSQL數(shù)據(jù)庫(kù)滿足各業(yè)務(wù)系統(tǒng)數(shù)據(jù)的歸檔備份和事務(wù)型應(yīng)用,NewSQL MPP數(shù)據(jù)庫(kù)集群對(duì)即席查詢(xún)、多維分析等應(yīng)用提供高性能支持,并且通過(guò)MPP集群架構(gòu)實(shí)現(xiàn)應(yīng)對(duì)海量數(shù)據(jù)存儲(chǔ)的擴(kuò)展能力。

商業(yè)銀行數(shù)據(jù)中心存儲(chǔ)架構(gòu)

與傳統(tǒng)的OldSQL模式相比,商業(yè)銀行數(shù)據(jù)中心采用OldSQL+NewSQL混合搭建模式,數(shù)據(jù)加載性能提升3倍以上,即席查詢(xún)和統(tǒng)計(jì)分析性能提升6倍以上。NewSQL MPP的高可擴(kuò)展性能夠應(yīng)對(duì)新的業(yè)務(wù)需求,可隨著數(shù)據(jù)量的增長(zhǎng)采用集群方式構(gòu)建存儲(chǔ)容量更大的數(shù)據(jù)中心。

OldSQL+NoSQL 在互聯(lián)網(wǎng)大數(shù)據(jù)應(yīng)用中混合部署

在互聯(lián)網(wǎng)大數(shù)據(jù)應(yīng)用中采用OldSQL+NoSQL混合模式,能夠很好的解決互聯(lián)網(wǎng)大數(shù)據(jù)應(yīng)用對(duì)海量結(jié)構(gòu)化和非結(jié)構(gòu)化數(shù)據(jù)進(jìn)行存儲(chǔ)和快速處理的需求。在諸如大型電子商務(wù)平臺(tái)、大型SNS平臺(tái)等互聯(lián)網(wǎng)大數(shù)據(jù)應(yīng)用場(chǎng)景中,OldSQL在應(yīng)用中負(fù)責(zé)高價(jià)值密度結(jié)構(gòu)化數(shù)據(jù)的存儲(chǔ)和事務(wù)型處理,NoSQL在應(yīng)用中負(fù)責(zé)存儲(chǔ)和處理海量非結(jié)構(gòu)化的數(shù)據(jù)和低價(jià)值密度結(jié)構(gòu)化數(shù)據(jù)。OldSQL+NoSQL模式在互聯(lián)網(wǎng)大數(shù)據(jù)應(yīng)用中的互補(bǔ)作用體現(xiàn)在,OldSQL彌補(bǔ)了NoSQL在ACID特性和復(fù)雜關(guān)聯(lián)運(yùn)算方面的不足,NoSQL彌補(bǔ)了OldSQL在海量數(shù)據(jù)存儲(chǔ)和非結(jié)構(gòu)化數(shù)據(jù)處理方面的缺陷。

數(shù)據(jù)魔方是淘寶網(wǎng)的一款數(shù)據(jù)產(chǎn)品,主要提供行業(yè)數(shù)據(jù)分析、店鋪數(shù)據(jù)分析。淘寶數(shù)據(jù)產(chǎn)品在存儲(chǔ)層采用OldSQL+NoSQL混合模式,由基于MySQL的分布式關(guān)系型數(shù)據(jù)庫(kù)集群MyFOX和基于HBase的NoSQL存儲(chǔ)集群Prom組成。由于OldSQL強(qiáng)大的語(yǔ)義和關(guān)系表達(dá)能力,在應(yīng)用中仍然占據(jù)著重要地位,目前存儲(chǔ)在MyFOX中的統(tǒng)計(jì)結(jié)果數(shù)據(jù)已經(jīng)達(dá)到10TB,占據(jù)著數(shù)據(jù)魔方總數(shù)據(jù)量的95%以上。另一方面,NoSQL作為SQL的有益補(bǔ)充,解決了OldSQL數(shù)據(jù)庫(kù)無(wú)法解決的全屬性選擇器等問(wèn)題。

淘寶海量數(shù)據(jù)產(chǎn)品技術(shù)架構(gòu)

基于OldSQL+NoSQL混合架構(gòu)的特點(diǎn),數(shù)據(jù)魔方目前已經(jīng)能夠提供壓縮前80TB的數(shù)據(jù)存儲(chǔ)空間,支持每天4000萬(wàn)的查詢(xún)請(qǐng)求,平均響應(yīng)時(shí)間在28毫秒,足以滿足未來(lái)一段時(shí)間內(nèi)的業(yè)務(wù)增長(zhǎng)需求。

NewSQL+NoSQL 在行業(yè)大數(shù)據(jù)應(yīng)用中混合部署

行業(yè)大數(shù)據(jù)與互聯(lián)網(wǎng)大數(shù)據(jù)的區(qū)別在于行業(yè)大數(shù)據(jù)的價(jià)值密度更高,并且對(duì)結(jié)構(gòu)化數(shù)據(jù)的實(shí)時(shí)處理、復(fù)雜的多表關(guān)聯(lián)分析、即席查詢(xún)、數(shù)據(jù)強(qiáng)一致性等都比互聯(lián)網(wǎng)大數(shù)據(jù)有更高的要求。行業(yè)大數(shù)據(jù)應(yīng)用場(chǎng)景主要是分析類(lèi)應(yīng)用,如:電信、金融、政務(wù)、能源等行業(yè)的決策輔助、預(yù)測(cè)預(yù)警、統(tǒng)計(jì)分析、經(jīng)營(yíng)分析等。

在行業(yè)大數(shù)據(jù)應(yīng)用中采用NewSQL+NoSQL混合模式,充分利用NewSQL在結(jié)構(gòu)化數(shù)據(jù)分析處理方面的優(yōu)勢(shì),以及NoSQL在非結(jié)構(gòu)數(shù)據(jù)處理方面的優(yōu)勢(shì),實(shí)現(xiàn)NewSQL與NoSQL的功能互補(bǔ),解決行業(yè)大數(shù)據(jù)應(yīng)用對(duì)高價(jià)值結(jié)構(gòu)化數(shù)據(jù)的實(shí)時(shí)處理、復(fù)雜的多表關(guān)聯(lián)分析、即席查詢(xún)、數(shù)據(jù)強(qiáng)一致性等要求,以及對(duì)海量非結(jié)構(gòu)化數(shù)據(jù)存儲(chǔ)和精確查詢(xún)的要求。在應(yīng)用中,NewSQL承擔(dān)高價(jià)值密度結(jié)構(gòu)化數(shù)據(jù)的存儲(chǔ)和分析處理工作,NoSQL承擔(dān)存儲(chǔ)和處理海量非結(jié)構(gòu)化數(shù)據(jù)和不需要關(guān)聯(lián)分析、Ad-hoc查詢(xún)較少的低價(jià)值密度結(jié)構(gòu)化數(shù)據(jù)的工作。

當(dāng)前電信運(yùn)營(yíng)商在集中化BI系統(tǒng)建設(shè)過(guò)程中面臨著數(shù)據(jù)規(guī)模大、數(shù)據(jù)處理類(lèi)型多等問(wèn)題,并且需要應(yīng)對(duì)大量的固定應(yīng)用,以及占統(tǒng)計(jì)總數(shù)80%以上的突發(fā)性臨時(shí)統(tǒng)計(jì)(ad-hoc)需求。在集中化BI系統(tǒng)的建設(shè)中采用NewSQL+NoSQL混搭的模式,充分利用NewSQL在復(fù)雜分析、即席查詢(xún)等方面處理性能的優(yōu)勢(shì),及NoSQL在非結(jié)構(gòu)化數(shù)據(jù)處理和海量數(shù)據(jù)存儲(chǔ)方面的優(yōu)勢(shì),實(shí)現(xiàn)高效低成本。

集中化BI系統(tǒng)數(shù)據(jù)存儲(chǔ)架構(gòu)

集中化BI系統(tǒng)按照數(shù)據(jù)類(lèi)型和處理方式的不同,將結(jié)構(gòu)化數(shù)據(jù)和非結(jié)構(gòu)化數(shù)據(jù)分別存儲(chǔ)在不同的系統(tǒng)中:非結(jié)構(gòu)化數(shù)據(jù)在Hadoop平臺(tái)上存儲(chǔ)與處理;結(jié)構(gòu)化、不需要關(guān)聯(lián)分析、Ad-hoc查詢(xún)較少的數(shù)據(jù)保存在NoSQL數(shù)據(jù)庫(kù)或Hadoop平臺(tái);結(jié)構(gòu)化、需要關(guān)聯(lián)分析或經(jīng)常ad-hoc查詢(xún)的數(shù)據(jù),保存在NewSQL MPP數(shù)據(jù)庫(kù)中,短期高價(jià)值數(shù)據(jù)放在高性能平臺(tái),中長(zhǎng)期放在低成本產(chǎn)品中。

結(jié)語(yǔ)

當(dāng)前信息化應(yīng)用的多樣性、復(fù)雜性,以及三種數(shù)據(jù)庫(kù)架構(gòu)各自所具有的優(yōu)勢(shì)和局限性,造成任何一種架構(gòu)的數(shù)據(jù)庫(kù)都不能完全滿足應(yīng)用需求,因此不同架構(gòu)數(shù)據(jù)庫(kù)混合使用,從而彌補(bǔ)其他架構(gòu)的不足成為必然選擇。根據(jù)應(yīng)用場(chǎng)景采用不同架構(gòu)數(shù)據(jù)庫(kù)進(jìn)行組合搭配,充分發(fā)揮每種架構(gòu)數(shù)據(jù)庫(kù)的特點(diǎn)和優(yōu)勢(shì),并且與其他架構(gòu)數(shù)據(jù)庫(kù)形成互補(bǔ),完全涵蓋應(yīng)用需求,保證數(shù)據(jù)資源的最優(yōu)化利用,將成為未來(lái)一段時(shí)期內(nèi)信息化應(yīng)用主要采用的解決方式。

目前在國(guó)內(nèi)市場(chǎng)上,OldSQL主要為Oracle、IBM等國(guó)外數(shù)據(jù)庫(kù)廠商所壟斷,達(dá)夢(mèng)、金倉(cāng)等國(guó)產(chǎn)廠商仍處于追趕狀態(tài);南大通用憑借國(guó)產(chǎn)新型數(shù)據(jù)庫(kù)GBase 8a異軍突起,與EMC的Greenplum和HP的Vertica躋身NewSQL市場(chǎng)三強(qiáng);NoSQL方面用戶(hù)則大多采用Hadoop開(kāi)源方案。

NoSQL數(shù)據(jù)庫(kù)是否意味著缺乏安全性?

NoSQL薄弱的安全性會(huì)給企業(yè)帶來(lái)負(fù)面影響 。Imperva公司創(chuàng)始人兼CTO Amichai Shulman如是說(shuō)。在新的一年中,無(wú)疑會(huì)有更多企業(yè)開(kāi)始或籌劃部署NoSQL。方案落實(shí)后就會(huì)逐漸發(fā)現(xiàn)種種安全問(wèn)題,因此早做準(zhǔn)備才是正確的選擇。 作為傳統(tǒng)關(guān)系型數(shù)據(jù)庫(kù)的替代方案,NoSQL在查詢(xún)中并不使用SQL語(yǔ)言,而且允許用戶(hù)隨時(shí)變更數(shù)據(jù)屬性。此類(lèi)數(shù)據(jù)庫(kù)以擴(kuò)展性良好著稱(chēng),并能夠在需要大量應(yīng)用程序與數(shù)據(jù)庫(kù)本身進(jìn)行實(shí)時(shí)交互的交易處理任務(wù)中發(fā)揮性能優(yōu)勢(shì),Couchbase創(chuàng)始人兼產(chǎn)品部門(mén)高級(jí)副總裁James Phillips解釋稱(chēng):NoSQL以交易業(yè)務(wù)為核心。它更注重實(shí)時(shí)處理能力并且擅長(zhǎng)直接對(duì)數(shù)據(jù)進(jìn)行操作,大幅度促進(jìn)了交互型軟件系統(tǒng)的發(fā)展。Phillips指出。其中最大的優(yōu)勢(shì)之一是能夠隨時(shí)改變(在屬性方面),由于結(jié)構(gòu)性的弱化,修改過(guò)程非常便捷。 NoSQL最大優(yōu)勢(shì)影響其安全性 NoSQL的關(guān)鍵性特色之一是其動(dòng)態(tài)的數(shù)據(jù)模型,Shulman解釋道。我可以在其運(yùn)作過(guò)程中加入新的屬性記錄。因此與這種結(jié)構(gòu)相匹配的安全模型必須具備一定的前瞻性規(guī)劃。也就是說(shuō),它必須能夠了解數(shù)據(jù)庫(kù)引入的新屬性將引發(fā)哪些改變,以及新加入的屬性擁有哪些權(quán)限。然而這個(gè)層面上的安全概念目前尚不存在,根本沒(méi)有這樣的解決方案。 根據(jù)Phillips的說(shuō)法,某些NoSQL開(kāi)發(fā)商已經(jīng)開(kāi)始著手研發(fā)安全機(jī)制,至少在嘗試保護(hù)數(shù)據(jù)的完整性。在關(guān)系型數(shù)據(jù)庫(kù)領(lǐng)域,如果我們的數(shù)據(jù)組成不正確,那么它將無(wú)法與結(jié)構(gòu)并行運(yùn)作,換言之?dāng)?shù)據(jù)插入操作整體將宣告失敗。目前各種驗(yàn)證規(guī)則與完整性檢查已經(jīng)比較完善,而事實(shí)證明這些驗(yàn)證機(jī)制都能在NoSQL中發(fā)揮作用。我們與其他人所推出的解決方案類(lèi)似,都會(huì)在插入一條新記錄或是文檔型規(guī)則時(shí)觸發(fā),并在執(zhí)行過(guò)程中確保插入數(shù)據(jù)的正確性。 Shulman預(yù)計(jì)新用戶(hù)很快將在配置方面捅出大婁子,這并非因?yàn)镮T工作人員的玩忽職守,實(shí)際上主要原因是NoSQL作為一項(xiàng)新技術(shù)導(dǎo)致大多數(shù)人對(duì)其缺乏足夠的知識(shí)基礎(chǔ)。Application Security研發(fā)部門(mén)TeamSHATTER的經(jīng)理Alex Rothacker對(duì)上述觀點(diǎn)表示贊同。他指出,培訓(xùn)的一大問(wèn)題在于,大多數(shù)NoSQL的從業(yè)者往往屬于新生代IT人士,他們對(duì)于技術(shù)了解較多,但往往缺乏足夠的安全管理經(jīng)驗(yàn)。 如果他們從傳統(tǒng)關(guān)系型數(shù)據(jù)庫(kù)入手,那么由于強(qiáng)制性安全機(jī)制的完備,他們可以在使用中學(xué)習(xí)。但NoSQL,只有行家才能通過(guò)觀察得出正確結(jié)論,并在大量研究工作后找到一套完備的安全解決方案。因此可能有90%的從業(yè)者由于知識(shí)儲(chǔ)備、安全經(jīng)驗(yàn)或是工作時(shí)間的局限而無(wú)法做到這一點(diǎn)。 NoSQL需在安全性方面進(jìn)行優(yōu)化 盡管Phillips認(rèn)同新技術(shù)與舊經(jīng)驗(yàn)之間存在差異,但企業(yè)在推廣NoSQL時(shí)加大對(duì)安全性的關(guān)注會(huì)起到很大程度的積極作用。他認(rèn)為此類(lèi)數(shù)據(jù)存儲(chǔ)機(jī)制與傳統(tǒng)關(guān)系類(lèi)數(shù)據(jù)庫(kù)相比,其中包含著的敏感類(lèi)信息更少,而且與企業(yè)網(wǎng)絡(luò)內(nèi)部其它應(yīng)用程序的接觸機(jī)會(huì)也小得多。 他們并不把這項(xiàng)新技術(shù)完全當(dāng)成數(shù)據(jù)庫(kù)使用,正如我們?cè)谑占泶罅縼?lái)自其它應(yīng)用程序的業(yè)務(wù)類(lèi)數(shù)據(jù)時(shí),往往也會(huì)考慮將其作為企業(yè)數(shù)據(jù)存儲(chǔ)機(jī)制一樣,他補(bǔ)充道。當(dāng)然,如果我打算研發(fā)一套具備某種特定功能的社交網(wǎng)絡(luò)、社交游戲或是某種特殊web應(yīng)用程序,也很可能會(huì)將其部署于防火墻之下。這樣一來(lái)它不僅與應(yīng)用程序緊密結(jié)合,也不會(huì)被企業(yè)中的其它部門(mén)所觸及。 但Rothacker同時(shí)表示,這種過(guò)度依賴(lài)周邊安全機(jī)制的數(shù)據(jù)庫(kù)系統(tǒng)也存在著極其危險(xiǎn)的漏洞。一旦系統(tǒng)完全依附于周邊安全模型,那么驗(yàn)證機(jī)制就必須相對(duì)薄弱,而且缺乏多用戶(hù)管理及數(shù)據(jù)訪問(wèn)方面的安全保護(hù)。只要擁有高權(quán)限賬戶(hù),我們幾乎能訪問(wèn)存儲(chǔ)機(jī)制中的一切數(shù)據(jù)。舉例來(lái)說(shuō),Brian Sullivan就在去年的黑帽大會(huì)上演示了如何在完全不清楚數(shù)據(jù)具體內(nèi)容的情況下,將其信息羅列出來(lái)甚至導(dǎo)出。 而根據(jù)nCircle公司CTO Tim ‘TK’ Keanini的觀點(diǎn),即使是與有限的應(yīng)用程序相關(guān)聯(lián),NoSQL也很有可能被暴露在互聯(lián)網(wǎng)上。在缺少?lài)?yán)密網(wǎng)絡(luò)劃分的情況下,它可能成為攻擊者窺探存儲(chǔ)數(shù)據(jù)的薄弱環(huán)節(jié)。因?yàn)镹oSQL在設(shè)計(jì)上主要用于互聯(lián)網(wǎng)規(guī)模的部署,所以它很可能被直接連接到互聯(lián)網(wǎng)中,進(jìn)而面臨大量攻擊行為。 其中發(fā)生機(jī)率最高的攻擊行為就是注入式攻擊,這也是一直以來(lái)肆虐于關(guān)系類(lèi)數(shù)據(jù)庫(kù)領(lǐng)域的頭號(hào)公敵。盡管NoSQL沒(méi)有將SQL作為查詢(xún)語(yǔ)言,也并不代表它能夠免受注入式攻擊的威脅。雖然不少人宣稱(chēng)SQL注入在NoSQL這邊不起作用,但其中的原理是完全一致的。攻擊者需要做的只是改變自己注入內(nèi)容的語(yǔ)法形式,Rothacker解釋稱(chēng)。也就是說(shuō)雖然SQL注入不會(huì)出現(xiàn),但JavaScript注入或者JSON注入同樣能威脅安全。 此外,攻擊者在籌劃對(duì)這類(lèi)數(shù)據(jù)庫(kù)展開(kāi)侵襲時(shí),也很可能進(jìn)一步優(yōu)化自己的工具。不成熟的安全技術(shù)往往帶來(lái)這樣的窘境:需要花費(fèi)大量時(shí)間學(xué)習(xí)如何保障其安全,但幾乎每個(gè)IT人士都能迅速掌握攻擊活動(dòng)的組織方法。因此我認(rèn)為攻擊者將會(huì)始終走在安全部署的前面,Shulman說(shuō)道。遺憾的是搞破壞總比防范工作更容易,而我們已經(jīng)看到不少NoSQL技術(shù)方面的公開(kāi)漏洞,尤其是目前引起熱議的、以JSON注入為載體的攻擊方式。 NoSQL安全性并非其阻礙 然而,這一切都不應(yīng)該成為企業(yè)使用NoSQL的阻礙,他總結(jié)道。我認(rèn)為歸根結(jié)底,這應(yīng)該算是企業(yè)的一種商業(yè)決策。只要這種選擇能夠帶來(lái)吸引力巨大的商業(yè)機(jī)遇,就要承擔(dān)一定風(fēng)險(xiǎn),Shulman解釋道。但應(yīng)該采取一定措施以盡量弱化這種風(fēng)險(xiǎn)。 舉例來(lái)說(shuō),鑒于數(shù)據(jù)庫(kù)對(duì)外部安全機(jī)制的依賴(lài)性,Rothacker建議企業(yè)積極考慮引入加密方案。他警告稱(chēng),企業(yè)必須對(duì)與NoSQL相對(duì)接的應(yīng)用程序代碼仔細(xì)檢查。換言之,企業(yè)必須嚴(yán)格挑選負(fù)責(zé)此類(lèi)項(xiàng)目部署的人選,確保將最好的人才用于這方面事務(wù),Shulman表示。當(dāng)大家以NoSQL為基礎(chǔ)編寫(xiě)應(yīng)用程序時(shí),必須啟用有經(jīng)驗(yàn)的編程人員,因?yàn)榭蛻?hù)端軟件是抵擋安全問(wèn)題的第一道屏障。切實(shí)為額外緩沖區(qū)的部署留出時(shí)間與預(yù)算,這能夠讓員工有閑暇反思自己的工作內(nèi)容并盡量多顧及安全考量多想一點(diǎn)就是進(jìn)步。綜上所述,這可能與部署傳統(tǒng)的關(guān)系類(lèi)數(shù)據(jù)庫(kù)也沒(méi)什么不同。 具有諷刺意味的是,近年來(lái)數(shù)據(jù)庫(kù)應(yīng)用程序在安全性方面的提升基本都跟數(shù)據(jù)庫(kù)本身沒(méi)什么關(guān)系,nCircle公司安全研究及開(kāi)發(fā)部門(mén)總監(jiān)Oliver Lavery如是說(shuō)。

NoSQL 數(shù)據(jù)庫(kù):何時(shí)使用 NoSQL 與 SQL?

NoSQL 數(shù)據(jù)庫(kù)因其功能性、易于開(kāi)發(fā)性和可擴(kuò)展性而廣受認(rèn)可,它們?cè)絹?lái)越多地用于大數(shù)據(jù)和實(shí)時(shí) Web 應(yīng)用程序,在本文中,我們通過(guò)示例討論 NoSQL、何時(shí)使用 NoSQL 與 SQL 及其用例。

NoSQL是一種下一代數(shù)據(jù)庫(kù)管理系統(tǒng) (DBMS)。NoSQL 數(shù)據(jù)庫(kù)具有靈活的模式,可用于構(gòu)建具有大量數(shù)據(jù)和高負(fù)載的現(xiàn)代應(yīng)用程序。

“NoSQL”一詞最初是由 Carlo Strozzi 在 1998 年創(chuàng)造的,盡管自 1960 年代后期以來(lái)就已經(jīng)存在類(lèi)似的數(shù)據(jù)庫(kù)。然而,NoSQL 的發(fā)展始于 2009 年初,并且發(fā)展迅速。

在處理大量數(shù)據(jù)時(shí),任何關(guān)系數(shù)據(jù)庫(kù)管理系統(tǒng) (RDBMS) 的響應(yīng)時(shí)間都會(huì)變慢。為了解決這個(gè)問(wèn)題,我們可以通過(guò)升級(jí)現(xiàn)有硬件來(lái)“擴(kuò)大”信息系統(tǒng),這非常昂貴。但是,NoSQL 可以更好地橫向擴(kuò)展并且更具成本效益。

NoSQL 對(duì)于非結(jié)構(gòu)化或非常大的數(shù)據(jù)對(duì)象(例如聊天日志數(shù)據(jù)、視頻或圖像)非常有用,這就是為什么 NoSQL 在微軟、谷歌、亞馬遜、Meta (Facebook) 等互聯(lián)網(wǎng)巨頭中特別受歡迎的原因。

一些流行的 NoSQL 數(shù)據(jù)庫(kù)包括:

隨著企業(yè)更快地積累更大的數(shù)據(jù)集,結(jié)構(gòu)化數(shù)據(jù)和關(guān)系模式并不總是適合。有必要使用非結(jié)構(gòu)化數(shù)據(jù)和大型對(duì)象來(lái)更好地捕獲這些信息。

傳統(tǒng)的 RDBMS 使用 SQL(結(jié)構(gòu)化查詢(xún)語(yǔ)言)語(yǔ)法來(lái)存儲(chǔ)和檢索結(jié)構(gòu)化數(shù)據(jù),相反,NoSQL 數(shù)據(jù)庫(kù)包含廣泛的功能,可以存儲(chǔ)和檢索結(jié)構(gòu)化、半結(jié)構(gòu)化、非結(jié)構(gòu)化和多態(tài)數(shù)據(jù)。

有時(shí),NoSQL 也被稱(chēng)為“ 不僅僅是 SQL ”,強(qiáng)調(diào)它可能支持類(lèi)似 SQL 的語(yǔ)言或與 SQL 數(shù)據(jù)庫(kù)并列。SQL 和 NoSQL DBMS 之間的一個(gè)區(qū)別是 JOIN 功能。SQL 數(shù)據(jù)庫(kù)使用 JOIN 子句來(lái)組合來(lái)自?xún)蓚€(gè)或多個(gè)表的行,因?yàn)?NoSQL 數(shù)據(jù)庫(kù)本質(zhì)上不是表格的,所以這個(gè)功能并不總是可行或相關(guān)的。

但是,一些 NoSQL DBMS 可以執(zhí)行類(lèi)似于 JOIN的操作——就像 MongoDB 一樣。這并不意味著不再需要 SQL DBMS,相反,NoSQL 和 SQL 數(shù)據(jù)庫(kù)傾向于以不同的方式解決類(lèi)似的問(wèn)題。

一般來(lái)說(shuō),在以下情況下,NoSQL 比 SQL 更可取:

許多行業(yè)都在采用 NoSQL,取代關(guān)系數(shù)據(jù)庫(kù),從而為某些業(yè)務(wù)應(yīng)用程序提供更高的靈活性和可擴(kuò)展性,下面給出了 NoSQL 數(shù)據(jù)庫(kù)的一些企業(yè)用例。

內(nèi)容管理是一組用于收集、管理、傳遞、檢索和發(fā)布任何格式的信息的過(guò)程,包括文本、圖像、音頻和視頻。NoSQL 數(shù)據(jù)庫(kù)可以通過(guò)其靈活和開(kāi)放的數(shù)據(jù)模型為存儲(chǔ)多媒體內(nèi)容提供更好的選擇。

例如,福布斯在短短幾個(gè)月內(nèi)就構(gòu)建了一個(gè)基于 MongoDB 的定制內(nèi)容管理系統(tǒng),以更低的成本為他們提供了更大的敏捷性。

大數(shù)據(jù)是指太大而無(wú)法通過(guò)傳統(tǒng)處理系統(tǒng)處理的數(shù)據(jù)集,實(shí)時(shí)存儲(chǔ)和檢索大數(shù)據(jù)的系統(tǒng)在分析 歷史 數(shù)據(jù)的同時(shí)使用流處理來(lái)攝取新數(shù)據(jù),這是一系列非常適合 NoSQL 數(shù)據(jù)庫(kù)的功能。

Zoom使用 DynamoDB(按需模式)使其數(shù)據(jù)能夠在沒(méi)有性能問(wèn)題的情況下進(jìn)行擴(kuò)展,即使該服務(wù)在 COVID-19 大流行的早期使用量激增。

物聯(lián)網(wǎng)設(shè)備具有連接到互聯(lián)網(wǎng)或通信網(wǎng)絡(luò)的嵌入式軟件和傳感器,能夠在無(wú)需人工干預(yù)的情況下收集和共享數(shù)據(jù)。隨著數(shù)十億臺(tái)設(shè)備生成數(shù)不清的數(shù)據(jù),IoT NoSQL 數(shù)據(jù)庫(kù)為 IoT 服務(wù)提供商提供了可擴(kuò)展性和更靈活的架構(gòu)。

Freshub就是這樣的一項(xiàng)服務(wù),它從 MySQL 切換到 MongoDB,以更好地處理其大型、動(dòng)態(tài)、非統(tǒng)一的數(shù)據(jù)集。

擁有數(shù)十億智能手機(jī)用戶(hù),可擴(kuò)展性正成為在移動(dòng)設(shè)備上提供服務(wù)的企業(yè)面臨的最大挑戰(zhàn)。具有更靈活數(shù)據(jù)模型的 NoSQL DBMS 通常是完美的解決方案。

例如,The Weather Channel使用 MongoDB 數(shù)據(jù)庫(kù)每分鐘處理數(shù)百萬(wàn)個(gè)請(qǐng)求,同時(shí)還處理用戶(hù)數(shù)據(jù)并提供天氣更新。

高性能 NoSQL

關(guān)系數(shù)據(jù)庫(kù)經(jīng)過(guò)幾十年的發(fā)展,已經(jīng)非常成熟,但同時(shí)也存在不足:

表結(jié)構(gòu)是強(qiáng)約束的,業(yè)務(wù)變更時(shí)擴(kuò)充很麻煩。

如果對(duì)大數(shù)據(jù)量的表進(jìn)行統(tǒng)計(jì)運(yùn)算,I/O會(huì)很高,因?yàn)榧词怪会槍?duì)某列進(jìn)行運(yùn)算,也需要將整行數(shù)據(jù)讀入內(nèi)存。

全文搜索只能使用 Like 進(jìn)行整表掃描,性能非常低。

針對(duì)這些不足,產(chǎn)生了不同的 NoSQL 解決方案,在某些場(chǎng)景下比關(guān)系數(shù)據(jù)庫(kù)更有優(yōu)勢(shì),但同時(shí)也犧牲了某些特性,所以不能片面的迷信某種方案,應(yīng)將其作為 SQL 的有利補(bǔ)充。

NoSQL != No SQL,而是:

NoSQL = Not Only SQL

典型的 NoSQL 方案分為4類(lèi):

Redis 是典型,其 value 是具體的數(shù)據(jù)結(jié)構(gòu),包括 string, hash, list, set, sorted set, bitmap, hyperloglog,常被稱(chēng)為數(shù)據(jù)結(jié)構(gòu)服務(wù)器。

以 list 為例:

LPOP key 是移除并返回隊(duì)列左邊的第一個(gè)元素。

如果用關(guān)系數(shù)據(jù)庫(kù)就比較麻煩了,需要操作:

Redis 的缺點(diǎn)主要體現(xiàn)在不支持完成的ACID事務(wù),只能保證隔離性和一致性,無(wú)法保證原子性和持久性。

最大的特點(diǎn)是 no-schema,無(wú)需在使用前定義字段,讀取一個(gè)不存在的字段也不會(huì)導(dǎo)致語(yǔ)法錯(cuò)誤。

特點(diǎn):

以電商為例,不同商品的屬性差異很大,如冰箱和電腦,這種差異性在關(guān)系數(shù)據(jù)庫(kù)中會(huì)有很大的麻煩,而使用文檔數(shù)據(jù)庫(kù)則非常方便。

文檔數(shù)據(jù)庫(kù)的主要缺點(diǎn):

關(guān)系數(shù)據(jù)庫(kù)是按行來(lái)存儲(chǔ)的,列式數(shù)據(jù)庫(kù)是按照列來(lái)存儲(chǔ)數(shù)據(jù)。

按行存儲(chǔ)的優(yōu)勢(shì):

在某些場(chǎng)景下,這些優(yōu)勢(shì)就成為劣勢(shì)了,例如,計(jì)算超重人員的數(shù)據(jù),只需要讀取體重這一列進(jìn)行統(tǒng)計(jì)即可,但行式存儲(chǔ)會(huì)將整行數(shù)據(jù)讀取到內(nèi)存中,很浪費(fèi)。

而列式存儲(chǔ)中,只需要讀取體重這列的數(shù)據(jù)即可,I/O 將大大減少。

除了節(jié)省I/O,列式存儲(chǔ)還有更高的壓縮比,可以節(jié)省存儲(chǔ)空間。普通行式數(shù)據(jù)庫(kù)的壓縮比在 3:1 到 5:1 左右,列式數(shù)據(jù)庫(kù)在 8:1 到 30:1,因?yàn)閱蝹€(gè)列的數(shù)據(jù)相似度更高。

列式存儲(chǔ)的隨機(jī)寫(xiě)效率遠(yuǎn)低于行式存儲(chǔ),因?yàn)樾惺酱鎯?chǔ)時(shí)同一行多個(gè)列都存儲(chǔ)在連續(xù)空間中,而列式存儲(chǔ)將不同列存儲(chǔ)在不連續(xù)的空間。

一般將列式存儲(chǔ)應(yīng)用在離線大數(shù)據(jù)分析統(tǒng)計(jì)場(chǎng)景,因?yàn)檫@時(shí)主要針對(duì)部分列進(jìn)行操作,而且數(shù)據(jù)寫(xiě)入后無(wú)須更新。

關(guān)系數(shù)據(jù)庫(kù)通過(guò)索引進(jìn)行快速查詢(xún),但在全文搜索的情景下,索引就不夠了,因?yàn)椋?/p>

假設(shè)有一個(gè)交友網(wǎng)站,信息表如下:

需要匹配性別、地點(diǎn)、語(yǔ)言列。

需要匹配性別、地點(diǎn)、愛(ài)好列。

實(shí)際搜索中,各種排列組合非常多,關(guān)系數(shù)據(jù)庫(kù)很難支持。

全文搜索引擎是使用 倒排索引 技術(shù),建立單詞到文檔的索引,例如上面的表信息建立倒排索引:

所以特別適合根據(jù)關(guān)鍵詞來(lái)查詢(xún)文檔內(nèi)容。

上面介紹了幾種典型的NoSQL方案,及各自的適用場(chǎng)景和特點(diǎn),您可以根據(jù)實(shí)際需求進(jìn)行選擇。

目前哪些NoSQL數(shù)據(jù)庫(kù)應(yīng)用廣泛,各有什么特點(diǎn)

特點(diǎn):

它們可以處理超大量的數(shù)據(jù)。

它們運(yùn)行在便宜的PC服務(wù)器集群上。

PC集群擴(kuò)充起來(lái)非常方便并且成本很低,避免了“sharding”操作的復(fù)雜性和成本。

它們擊碎了性能瓶頸。

NoSQL的支持者稱(chēng),通過(guò)NoSQL架構(gòu)可以省去將Web或Java應(yīng)用和數(shù)據(jù)轉(zhuǎn)換成SQL友好格式的時(shí)間,執(zhí)行速度變得更快。

“SQL并非適用于所有的程序代碼,” 對(duì)于那些繁重的重復(fù)操作的數(shù)據(jù),SQL值得花錢(qián)。但是當(dāng)數(shù)據(jù)庫(kù)結(jié)構(gòu)非常簡(jiǎn)單時(shí),SQL可能沒(méi)有太大用處。

沒(méi)有過(guò)多的操作。

雖然NoSQL的支持者也承認(rèn)關(guān)系數(shù)據(jù)庫(kù)提供了無(wú)可比擬的功能集合,而且在數(shù)據(jù)完整性上也發(fā)揮絕對(duì)穩(wěn)定,他們同時(shí)也表示,企業(yè)的具體需求可能沒(méi)有那么多。

Bootstrap支持

因?yàn)镹oSQL項(xiàng)目都是開(kāi)源的,因此它們?nèi)狈?yīng)商提供的正式支持。這一點(diǎn)它們與大多數(shù)開(kāi)源項(xiàng)目一樣,不得不從社區(qū)中尋求支持。

優(yōu)點(diǎn):

易擴(kuò)展

NoSQL數(shù)據(jù)庫(kù)種類(lèi)繁多,但是一個(gè)共同的特點(diǎn)都是去掉關(guān)系數(shù)據(jù)庫(kù)的關(guān)系型特性。數(shù)據(jù)之間無(wú)關(guān)系,這樣就非常容易擴(kuò)展。也無(wú)形之間,在架構(gòu)的層面上帶來(lái)了可擴(kuò)展的能力。

大數(shù)據(jù)量,高性能

NoSQL數(shù)據(jù)庫(kù)都具有非常高的讀寫(xiě)性能,尤其在大數(shù)據(jù)量下,同樣表現(xiàn)優(yōu)秀。這得益于它的無(wú)關(guān)系性,數(shù)據(jù)庫(kù)的結(jié)構(gòu)簡(jiǎn)單。一般MySQL使用 Query Cache,每次表的更新Cache就失效,是一種大粒度的Cache,在針對(duì)web2.0的交互頻繁的應(yīng)用,Cache性能不高。而NoSQL的 Cache是記錄級(jí)的,是一種細(xì)粒度的Cache,所以NoSQL在這個(gè)層面上來(lái)說(shuō)就要性能高很多了。

靈活的數(shù)據(jù)模型

NoSQL無(wú)需事先為要存儲(chǔ)的數(shù)據(jù)建立字段,隨時(shí)可以存儲(chǔ)自定義的數(shù)據(jù)格式。而在關(guān)系數(shù)據(jù)庫(kù)里,增刪字段是一件非常麻煩的事情。如果是非常大數(shù)據(jù)量的表,增加字段簡(jiǎn)直就是一個(gè)噩夢(mèng)。這點(diǎn)在大數(shù)據(jù)量的web2.0時(shí)代尤其明顯。

高可用

NoSQL在不太影響性能的情況,就可以方便的實(shí)現(xiàn)高可用的架構(gòu)。比如Cassandra,HBase模型,通過(guò)復(fù)制模型也能實(shí)現(xiàn)高可用。

主要應(yīng)用:

Apache HBase

這個(gè)大數(shù)據(jù)管理平臺(tái)建立在谷歌強(qiáng)大的BigTable管理引擎基礎(chǔ)上。作為具有開(kāi)源、Java編碼、分布式多個(gè)優(yōu)勢(shì)的數(shù)據(jù)庫(kù),Hbase最初被設(shè)計(jì)應(yīng)用于Hadoop平臺(tái),而這一強(qiáng)大的數(shù)據(jù)管理工具,也被Facebook采用,用于管理消息平臺(tái)的龐大數(shù)據(jù)。

Apache Storm

用于處理高速、大型數(shù)據(jù)流的分布式實(shí)時(shí)計(jì)算系統(tǒng)。Storm為Apache Hadoop添加了可靠的實(shí)時(shí)數(shù)據(jù)處理功能,同時(shí)還增加了低延遲的儀表板、安全警報(bào),改進(jìn)了原有的操作方式,幫助企業(yè)更有效率地捕獲商業(yè)機(jī)會(huì)、發(fā)展新業(yè)務(wù)。

Apache Spark

該技術(shù)采用內(nèi)存計(jì)算,從多迭代批量處理出發(fā),允許將數(shù)據(jù)載入內(nèi)存做反復(fù)查詢(xún),此外還融合數(shù)據(jù)倉(cāng)庫(kù)、流處理和圖計(jì)算等多種計(jì)算范式,Spark用Scala語(yǔ)言實(shí)現(xiàn),構(gòu)建在HDFS上,能與Hadoop很好的結(jié)合,而且運(yùn)行速度比MapReduce快100倍。

Apache Hadoop

該技術(shù)迅速成為了大數(shù)據(jù)管理標(biāo)準(zhǔn)之一。當(dāng)它被用來(lái)管理大型數(shù)據(jù)集時(shí),對(duì)于復(fù)雜的分布式應(yīng)用,Hadoop體現(xiàn)出了非常好的性能,平臺(tái)的靈活性使它可以運(yùn)行在商用硬件系統(tǒng),它還可以輕松地集成結(jié)構(gòu)化、半結(jié)構(gòu)化和甚至非結(jié)構(gòu)化數(shù)據(jù)集。

Apache Drill

你有多大的數(shù)據(jù)集?其實(shí)無(wú)論你有多大的數(shù)據(jù)集,Drill都能輕松應(yīng)對(duì)。通過(guò)支持HBase、Cassandra和MongoDB,Drill建立了交互式分析平臺(tái),允許大規(guī)模數(shù)據(jù)吞吐,而且能很快得出結(jié)果。

Apache Sqoop

也許你的數(shù)據(jù)現(xiàn)在還被鎖定于舊系統(tǒng)中,Sqoop可以幫你解決這個(gè)問(wèn)題。這一平臺(tái)采用并發(fā)連接,可以將數(shù)據(jù)從關(guān)系數(shù)據(jù)庫(kù)系統(tǒng)方便地轉(zhuǎn)移到Hadoop中,可以自定義數(shù)據(jù)類(lèi)型以及元數(shù)據(jù)傳播的映射。事實(shí)上,你還可以將數(shù)據(jù)(如新的數(shù)據(jù))導(dǎo)入到HDFS、Hive和Hbase中。

Apache Giraph

這是功能強(qiáng)大的圖形處理平臺(tái),具有很好可擴(kuò)展性和可用性。該技術(shù)已經(jīng)被Facebook采用,Giraph可以運(yùn)行在Hadoop環(huán)境中,可以將它直接部署到現(xiàn)有的Hadoop系統(tǒng)中。通過(guò)這種方式,你可以得到強(qiáng)大的分布式作圖能力,同時(shí)還能利用上現(xiàn)有的大數(shù)據(jù)處理引擎。

Cloudera Impala

Impala模型也可以部署在你現(xiàn)有的Hadoop群集上,監(jiān)視所有的查詢(xún)。該技術(shù)和MapReduce一樣,具有強(qiáng)大的批處理能力,而且Impala對(duì)于實(shí)時(shí)的SQL查詢(xún)也有很好的效果,通過(guò)高效的SQL查詢(xún),你可以很快的了解到大數(shù)據(jù)平臺(tái)上的數(shù)據(jù)。

Gephi

它可以用來(lái)對(duì)信息進(jìn)行關(guān)聯(lián)和量化處理,通過(guò)為數(shù)據(jù)創(chuàng)建功能強(qiáng)大的可視化效果,你可以從數(shù)據(jù)中得到不一樣的洞察力。Gephi已經(jīng)支持多個(gè)圖表類(lèi)型,而且可以在具有上百萬(wàn)個(gè)節(jié)點(diǎn)的大型網(wǎng)絡(luò)上運(yùn)行。Gephi具有活躍的用戶(hù)社區(qū),Gephi還提供了大量的插件,可以和現(xiàn)有系統(tǒng)完美的集成到一起,它還可以對(duì)復(fù)雜的IT連接、分布式系統(tǒng)中各個(gè)節(jié)點(diǎn)、數(shù)據(jù)流等信息進(jìn)行可視化分析。

MongoDB

這個(gè)堅(jiān)實(shí)的平臺(tái)一直被很多組織推崇,它在大數(shù)據(jù)管理上有極好的性能。MongoDB最初是由DoubleClick公司的員工創(chuàng)建,現(xiàn)在該技術(shù)已經(jīng)被廣泛的應(yīng)用于大數(shù)據(jù)管理。MongoDB是一個(gè)應(yīng)用開(kāi)源技術(shù)開(kāi)發(fā)的NoSQL數(shù)據(jù)庫(kù),可以用于在JSON這樣的平臺(tái)上存儲(chǔ)和處理數(shù)據(jù)。目前,紐約時(shí)報(bào)、Craigslist以及眾多企業(yè)都采用了MongoDB,幫助他們管理大型數(shù)據(jù)集。(Couchbase服務(wù)器也作為一個(gè)參考)。

十大頂尖公司:

Amazon Web Services

Forrester將AWS稱(chēng)為“云霸主”,談到云計(jì)算領(lǐng)域的大數(shù)據(jù),那就不得不提到亞馬遜。該公司的Hadoop產(chǎn)品被稱(chēng)為EMR(Elastic Map Reduce),AWS解釋這款產(chǎn)品采用了Hadoop技術(shù)來(lái)提供大數(shù)據(jù)管理服務(wù),但它不是純開(kāi)源Hadoop,經(jīng)過(guò)修改后現(xiàn)在被專(zhuān)門(mén)用在AWS云上。

Forrester稱(chēng)EMR有很好的市場(chǎng)前景。很多公司基于EMR為客戶(hù)提供服務(wù),有一些公司將EMR應(yīng)用于數(shù)據(jù)查詢(xún)、建模、集成和管理。而且AWS還在創(chuàng)新,F(xiàn)orrester稱(chēng)未來(lái)EMR可以基于工作量的需要自動(dòng)縮放調(diào)整大小。亞馬遜計(jì)劃為其產(chǎn)品和服務(wù)提供更強(qiáng)大的EMR支持,包括它的RedShift數(shù)據(jù)倉(cāng)庫(kù)、新公布的Kenesis實(shí)時(shí)處理引擎以及計(jì)劃中的NoSQL數(shù)據(jù)庫(kù)和商業(yè)智能工具。不過(guò)AWS還沒(méi)有自己的Hadoop發(fā)行版。

Cloudera

Cloudera有開(kāi)源Hadoop的發(fā)行版,這個(gè)發(fā)行版采用了Apache Hadoop開(kāi)源項(xiàng)目的很多技術(shù),不過(guò)基于這些技術(shù)的發(fā)行版也有很大的進(jìn)步。Cloudera為它的Hadoop發(fā)行版開(kāi)發(fā)了很多功能,包括Cloudera管理器,用于管理和監(jiān)控,以及名為Impala的SQL引擎等。Cloudera的Hadoop發(fā)行版基于開(kāi)源Hadoop,但也不是純開(kāi)源的產(chǎn)品。當(dāng)Cloudera的客戶(hù)需要Hadoop不具備的某些功能時(shí),Cloudera的工程師們就會(huì)實(shí)現(xiàn)這些功能,或者找一個(gè)擁有這項(xiàng)技術(shù)的合作伙伴。Forrester表示:“Cloudera的創(chuàng)新方法忠于核心Hadoop,但因?yàn)槠淇蓪?shí)現(xiàn)快速創(chuàng)新并積極滿足客戶(hù)需求,這一點(diǎn)使它不同于其他那些供應(yīng)商。”目前,Cloudera的平臺(tái)已經(jīng)擁有200多個(gè)付費(fèi)客戶(hù),一些客戶(hù)在Cloudera的技術(shù)支持下已經(jīng)可以跨1000多個(gè)節(jié)點(diǎn)實(shí)現(xiàn)對(duì)PB級(jí)數(shù)據(jù)的有效管理。

Hortonworks

和Cloudera一樣,Hortonworks是一個(gè)純粹的Hadoop技術(shù)公司。與Cloudera不同的是,Hortonworks堅(jiān)信開(kāi)源Hadoop比任何其他供應(yīng)商的Hadoop發(fā)行版都要強(qiáng)大。Hortonworks的目標(biāo)是建立Hadoop生態(tài)圈和Hadoop用戶(hù)社區(qū),推進(jìn)開(kāi)源項(xiàng)目的發(fā)展。Hortonworks平臺(tái)和開(kāi)源Hadoop聯(lián)系緊密,公司管理人員表示這會(huì)給用戶(hù)帶來(lái)好處,因?yàn)樗梢苑乐贡还?yīng)商套牢(如果Hortonworks的客戶(hù)想要離開(kāi)這個(gè)平臺(tái),他們可以輕松轉(zhuǎn)向其他開(kāi)源平臺(tái))。這并不是說(shuō)Hortonworks完全依賴(lài)開(kāi)源Hadoop技術(shù),而是因?yàn)樵摴緦⑵渌虚_(kāi)發(fā)的成果回報(bào)給了開(kāi)源社區(qū),比如Ambari,這個(gè)工具就是由Hortonworks開(kāi)發(fā)而成,用來(lái)填充集群管理項(xiàng)目漏洞。Hortonworks的方案已經(jīng)得到了Teradata、Microsoft、Red Hat和SAP這些供應(yīng)商的支持。

IBM

當(dāng)企業(yè)考慮一些大的IT項(xiàng)目時(shí),很多人首先會(huì)想到IBM。IBM是Hadoop項(xiàng)目的主要參與者之一,F(xiàn)orrester稱(chēng)IBM已有100多個(gè)Hadoop部署,它的很多客戶(hù)都有PB級(jí)的數(shù)據(jù)。IBM在網(wǎng)格計(jì)算、全球數(shù)據(jù)中心和企業(yè)大數(shù)據(jù)項(xiàng)目實(shí)施等眾多領(lǐng)域有著豐富的經(jīng)驗(yàn)。“IBM計(jì)劃繼續(xù)整合SPSS分析、高性能計(jì)算、BI工具、數(shù)據(jù)管理和建模、應(yīng)對(duì)高性能計(jì)算的工作負(fù)載管理等眾多技術(shù)。”

Intel

和AWS類(lèi)似,英特爾不斷改進(jìn)和優(yōu)化Hadoop使其運(yùn)行在自己的硬件上,具體來(lái)說(shuō),就是讓Hadoop運(yùn)行在其至強(qiáng)芯片上,幫助用戶(hù)打破Hadoop系統(tǒng)的一些限制,使軟件和硬件結(jié)合的更好,英特爾的Hadoop發(fā)行版在上述方面做得比較好。Forrester指出英特爾在最近才推出這個(gè)產(chǎn)品,所以公司在未來(lái)還有很多改進(jìn)的可能,英特爾和微軟都被認(rèn)為是Hadoop市場(chǎng)上的潛力股。

MapR Technologies

MapR的Hadoop發(fā)行版目前為止也許是最好的了,不過(guò)很多人可能都沒(méi)有聽(tīng)說(shuō)過(guò)。Forrester對(duì)Hadoop用戶(hù)的調(diào)查顯示,MapR的評(píng)級(jí)最高,其發(fā)行版在架構(gòu)和數(shù)據(jù)處理能力上都獲得了最高分。MapR已將一套特殊功能融入其Hadoop發(fā)行版中。例如網(wǎng)絡(luò)文件系統(tǒng)(NFS)、災(zāi)難恢復(fù)以及高可用性功能。Forrester說(shuō)MapR在Hadoop市場(chǎng)上沒(méi)有Cloudera和Hortonworks那樣的知名度,MapR要成為一個(gè)真正的大企業(yè),還需要加強(qiáng)伙伴關(guān)系和市場(chǎng)營(yíng)銷(xiāo)。

Microsoft

微軟在開(kāi)源軟件問(wèn)題上一直很低調(diào),但在大數(shù)據(jù)形勢(shì)下,它不得不考慮讓W(xué)indows也兼容Hadoop,它還積極投入到開(kāi)源項(xiàng)目中,以更廣泛地推動(dòng)Hadoop生態(tài)圈的發(fā)展。我們可以在微軟的公共云Windows Azure HDInsight產(chǎn)品中看到其成果。微軟的Hadoop服務(wù)基于Hortonworks的發(fā)行版,而且是為Azure量身定制的。

微軟也有一些其他的項(xiàng)目,包括名為Polybase的項(xiàng)目,讓Hadoop查詢(xún)實(shí)現(xiàn)了SQLServer查詢(xún)的一些功能。Forrester說(shuō):“微軟在數(shù)據(jù)庫(kù)、數(shù)據(jù)倉(cāng)庫(kù)、云、OLAP、BI、電子表格(包括PowerPivot)、協(xié)作和開(kāi)發(fā)工具市場(chǎng)上有很大優(yōu)勢(shì),而且微軟擁有龐大的用戶(hù)群,但要在Hadoop這個(gè)領(lǐng)域成為行業(yè)領(lǐng)導(dǎo)者還有很遠(yuǎn)的路要走。”

Pivotal Software

EMC和Vmware部分大數(shù)據(jù)業(yè)務(wù)分拆組合產(chǎn)生了Pivotal。Pivotal一直努力構(gòu)建一個(gè)性能優(yōu)越的Hadoop發(fā)行版,為此,Pivotal在開(kāi)源Hadoop的基礎(chǔ)上又添加了一些新的工具,包括一個(gè)名為HAWQ的SQL引擎以及一個(gè)專(zhuān)門(mén)解決大數(shù)據(jù)問(wèn)題的Hadoop應(yīng)用。Forrester稱(chēng)Pivotal Hadoop平臺(tái)的優(yōu)勢(shì)在于它整合了Pivotal、EMC、Vmware的眾多技術(shù),Pivotal的真正優(yōu)勢(shì)實(shí)際上等于EMC和Vmware兩大公司為其撐腰。到目前為止,Pivotal的用戶(hù)還不到100個(gè),而且大多是中小型客戶(hù)。

Teradata

對(duì)于Teradata來(lái)說(shuō),Hadoop既是一種威脅也是一種機(jī)遇。數(shù)據(jù)管理,特別是關(guān)于SQL和關(guān)系數(shù)據(jù)庫(kù)這一領(lǐng)域是Teradata的專(zhuān)長(zhǎng)。所以像Hadoop這樣的NoSQL平臺(tái)崛起可能會(huì)威脅到Teradata。相反,Teradata接受了Hadoop,通過(guò)與Hortonworks合作,Teradata在Hadoop平臺(tái)集成了SQL技術(shù),這使Teradata的客戶(hù)可以在Hadoop平臺(tái)上方便地使用存儲(chǔ)在Teradata數(shù)據(jù)倉(cāng)庫(kù)中的數(shù)據(jù)。

AMPLab

通過(guò)將數(shù)據(jù)轉(zhuǎn)變?yōu)樾畔ⅲ覀儾趴梢岳斫馐澜纾@也正是AMPLab所做的。AMPLab致力于機(jī)器學(xué)習(xí)、數(shù)據(jù)挖掘、數(shù)據(jù)庫(kù)、信息檢索、自然語(yǔ)言處理和語(yǔ)音識(shí)別等多個(gè)領(lǐng)域,努力改進(jìn)對(duì)信息包括不透明數(shù)據(jù)集內(nèi)信息的甄別技術(shù)。除了Spark,開(kāi)源分布式SQL查詢(xún)引擎Shark也源于AMPLab,Shark具有極高的查詢(xún)效率,具有良好的兼容性和可擴(kuò)展性。近幾年的發(fā)展使計(jì)算機(jī)科學(xué)進(jìn)入到全新的時(shí)代,而AMPLab為我們?cè)O(shè)想一個(gè)運(yùn)用大數(shù)據(jù)、云計(jì)算、通信等各種資源和技術(shù)靈活解決難題的方案,以應(yīng)對(duì)越來(lái)越復(fù)雜的各種難題。

本文名稱(chēng):nosql開(kāi)發(fā)電商的簡(jiǎn)單介紹
URL分享:http://chinadenli.net/article24/dsgggce.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供商城網(wǎng)站品牌網(wǎng)站設(shè)計(jì)云服務(wù)器標(biāo)簽優(yōu)化網(wǎng)站策劃

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶(hù)投稿、用戶(hù)轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)

h5響應(yīng)式網(wǎng)站建設(shè)