方法一:在使用OpenCV讀取圖片的同時(shí)將圖片轉(zhuǎn)換為灰度圖:

創(chuàng)新互聯(lián)專注于陵川企業(yè)網(wǎng)站建設(shè),響應(yīng)式網(wǎng)站開(kāi)發(fā),購(gòu)物商城網(wǎng)站建設(shè)。陵川網(wǎng)站建設(shè)公司,為陵川等地區(qū)提供建站服務(wù)。全流程按需求定制制作,專業(yè)設(shè)計(jì),全程項(xiàng)目跟蹤,創(chuàng)新互聯(lián)專業(yè)和態(tài)度為您提供的服務(wù)
img = cv2.imread(imgfile, cv2.IMREAD_GRAYSCALE)
print("cv2.imread(imgfile, cv2.IMREAD_GRAYSCALE)結(jié)果如下:")
print('大小:{}'.format(img.shape))
print("類型:%s"%type(img))
print(img)
運(yùn)行結(jié)果如下圖所示:
方法二:使用OpenCV,先讀取圖片,然后在轉(zhuǎn)換為灰度圖:
img = cv2.imread(imgfile)
#print(img.shape)
#print(img)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #Y = 0.299R + 0.587G + 0.114B
print("cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)結(jié)果如下:")
print('大小:{}'.format(gray_img.shape))
print("類型:%s" % type(gray_img))
print(gray_img)
運(yùn)行結(jié)果如下:
方法三:使用PIL庫(kù)中的Image模塊:
img = np.array(Image.open(imgfile).convert('L'), 'f') #讀取圖片,灰度化,轉(zhuǎn)換為數(shù)組,L = 0.299R + 0.587G + 0.114B。'f'為float類型
print("Image方法的結(jié)果如下:")
print('大小:{}'.format(img.shape))
print("類型:%s" % type(img))
print(img)
圖像的灰度處理:
CV_LOAD_IMAGE_GRAYSCALE,這是最簡(jiǎn)單之間的辦法,在加載圖像時(shí)直接處理
IplImage* Igray=cvLoadImage("test.jpg",CV_LOAD_IMAGE_GRAYSCALE);
得到的圖像就是單通道的,也能夠用這個(gè)函數(shù):CVAPI(void) cvCvtColor( const CvArr* src, CvArr* dst, int code );
code=CV_BGR2GRAY;
opencv還提供了非常多方式,我這邊就不一一舉例了。
import CV2
import copy
import numpy as np
import random
使用的是pycharm
因?yàn)樽罱戳恕躲y翼殺手2049》,里面Joi實(shí)在是太好看了所以原圖像就用Joi了
要求是灰度圖像,所以第一步先把圖像轉(zhuǎn)化成灰度圖像
# 讀入原始圖像
img = CV2.imread('joi.jpg')
# 灰度化處理
gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)
CV2.imwrite('img.png', gray)
第一個(gè)任務(wù)是利用分段函數(shù)增強(qiáng)灰度對(duì)比,我自己隨便寫了個(gè)函數(shù)大致是這樣的
def chng(a):
if a 255/3:
b = a/2
elif a 255/3*2:
b = (a-255/3)*2 + 255/6
else:
b = (a-255/3*2)/2 + 255/6 +255/3*2
return b
rows = img.shape[0]
cols = img.shape[1]
cover = copy.deepcopy(gray)
for i in range(rows):
for j in range(cols):
cover[i][j] = chng(cover[i][j])
CV2.imwrite('cover.png', cover)
下一步是直方圖均衡化
# histogram equalization
def hist_equal(img, z_max=255):
H, W = img.shape
# S is the total of pixels
S = H * W * 1.
out = img.copy()
sum_h = 0.
for i in range(1, 255):
ind = np.where(img == i)
sum_h += len(img[ind])
z_prime = z_max / S * sum_h
out[ind] = z_prime
out = out.astype(np.uint8)
return out
covereq = hist_equal(cover)
CV2.imwrite('covereq.png', covereq)
在實(shí)現(xiàn)濾波之前先添加高斯噪聲和椒鹽噪聲(代碼來(lái)源于網(wǎng)絡(luò))
不知道這個(gè)椒鹽噪聲的名字是誰(shuí)起的感覺(jué)隔壁小孩都饞哭了
用到了random.gauss()
percentage是噪聲占比
def GaussianNoise(src,means,sigma,percetage):
NoiseImg=src
NoiseNum=int(percetage*src.shape[0]*src.shape[1])
for i in range(NoiseNum):
randX=random.randint(0,src.shape[0]-1)
randY=random.randint(0,src.shape[1]-1)
NoiseImg[randX, randY]=NoiseImg[randX,randY]+random.gauss(means,sigma)
if NoiseImg[randX, randY] 0:
NoiseImg[randX, randY]=0
elif NoiseImg[randX, randY]255:
NoiseImg[randX, randY]=255
return NoiseImg
def PepperandSalt(src,percetage):
NoiseImg=src
NoiseNum=int(percetage*src.shape[0]*src.shape[1])
for i in range(NoiseNum):
randX=random.randint(0,src.shape[0]-1)
randY=random.randint(0,src.shape[1]-1)
if random.randint(0,1)=0.5:
NoiseImg[randX,randY]=0
else:
NoiseImg[randX,randY]=255
return NoiseImg
covereqg = GaussianNoise(covereq, 2, 4, 0.8)
CV2.imwrite('covereqg.png', covereqg)
covereqps = PepperandSalt(covereq, 0.05)
CV2.imwrite('covereqps.png', covereqps)
下面開(kāi)始均值濾波和中值濾波了
就以n x n為例,均值濾波就是用這n x n個(gè)像素點(diǎn)灰度值的平均值代替中心點(diǎn),而中值就是中位數(shù)代替中心點(diǎn),邊界點(diǎn)周圍補(bǔ)0;前兩個(gè)函數(shù)的作用是算出這個(gè)點(diǎn)的灰度值,后兩個(gè)是對(duì)整張圖片進(jìn)行
#均值濾波模板
def mean_filter(x, y, step, img):
sum_s = 0
for k in range(x-int(step/2), x+int(step/2)+1):
for m in range(y-int(step/2), y+int(step/2)+1):
if k-int(step/2) 0 or k+int(step/2)+1 img.shape[0]
or m-int(step/2) 0 or m+int(step/2)+1 img.shape[1]:
sum_s += 0
else:
sum_s += img[k][m] / (step*step)
return sum_s
#中值濾波模板
def median_filter(x, y, step, img):
sum_s=[]
for k in range(x-int(step/2), x+int(step/2)+1):
for m in range(y-int(step/2), y+int(step/2)+1):
if k-int(step/2) 0 or k+int(step/2)+1 img.shape[0]
or m-int(step/2) 0 or m+int(step/2)+1 img.shape[1]:
sum_s.append(0)
else:
sum_s.append(img[k][m])
sum_s.sort()
return sum_s[(int(step*step/2)+1)]
def median_filter_go(img, n):
img1 = copy.deepcopy(img)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
img1[i][j] = median_filter(i, j, n, img)
return img1
def mean_filter_go(img, n):
img1 = copy.deepcopy(img)
for i in range(img.shape[0]):
for j in range(img.shape[1]):
img1[i][j] = mean_filter(i, j, n, img)
return img1
完整main代碼如下:
if __name__ == "__main__":
# 讀入原始圖像
img = CV2.imread('joi.jpg')
# 灰度化處理
gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)
CV2.imwrite('img.png', gray)
rows = img.shape[0]
cols = img.shape[1]
cover = copy.deepcopy(gray)
for i in range(rows):
for j in range(cols):
cover[i][j] = chng(cover[i][j])
CV2.imwrite('cover.png', cover)
covereq = hist_equal(cover)
CV2.imwrite('covereq.png', covereq)
covereqg = GaussianNoise(covereq, 2, 4, 0.8)
CV2.imwrite('covereqg.png', covereqg)
covereqps = PepperandSalt(covereq, 0.05)
CV2.imwrite('covereqps.png', covereqps)
meanimg3 = mean_filter_go(covereqps, 3)
CV2.imwrite('medimg3.png', meanimg3)
meanimg5 = mean_filter_go(covereqps, 5)
CV2.imwrite('meanimg5.png', meanimg5)
meanimg7 = mean_filter_go(covereqps, 7)
CV2.imwrite('meanimg7.png', meanimg7)
medimg3 = median_filter_go(covereqg, 3)
CV2.imwrite('medimg3.png', medimg3)
medimg5 = median_filter_go(covereqg, 5)
CV2.imwrite('medimg5.png', medimg5)
medimg7 = median_filter_go(covereqg, 7)
CV2.imwrite('medimg7.png', medimg7)
medimg4 = median_filter_go(covereqps, 7)
CV2.imwrite('medimg4.png', medimg4)
不知道是搜索方法的問(wèn)題還是自己不愿意看文檔的問(wèn)題,
總之本來(lái)想在Python的標(biāo)準(zhǔn)庫(kù)里面找到一個(gè)可以判斷是否為灰度圖的標(biāo)準(zhǔn)庫(kù)函數(shù),
但是死活找不到,當(dāng)新問(wèn)題的難度比舊問(wèn)題難時(shí),果斷回來(lái)解決舊問(wèn)題,
那就是自己編寫一個(gè),效率問(wèn)題嘛,還是忽略一下,不考慮了
參考 怎么讀取每個(gè)像素的RGB
這里判斷是否為灰度圖的標(biāo)準(zhǔn)是:每一個(gè)像素所對(duì)應(yīng)的R、G、B的值是否相等。
網(wǎng)站欄目:python灰度函數(shù),python 灰度圖
網(wǎng)站網(wǎng)址:http://chinadenli.net/article18/heoodp.html
成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供建站公司、商城網(wǎng)站、企業(yè)建站、、手機(jī)網(wǎng)站建設(shè)、App設(shè)計(jì)
聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)