欧美一区二区三区老妇人-欧美做爰猛烈大尺度电-99久久夜色精品国产亚洲a-亚洲福利视频一区二区

python灰度函數(shù),python 灰度圖

python io. imread如何設(shè)置參數(shù),使讀取的圖片為灰度圖?

方法一:在使用OpenCV讀取圖片的同時(shí)將圖片轉(zhuǎn)換為灰度圖:

創(chuàng)新互聯(lián)專注于陵川企業(yè)網(wǎng)站建設(shè),響應(yīng)式網(wǎng)站開(kāi)發(fā),購(gòu)物商城網(wǎng)站建設(shè)。陵川網(wǎng)站建設(shè)公司,為陵川等地區(qū)提供建站服務(wù)。全流程按需求定制制作,專業(yè)設(shè)計(jì),全程項(xiàng)目跟蹤,創(chuàng)新互聯(lián)專業(yè)和態(tài)度為您提供的服務(wù)

img = cv2.imread(imgfile, cv2.IMREAD_GRAYSCALE)

print("cv2.imread(imgfile, cv2.IMREAD_GRAYSCALE)結(jié)果如下:")

print('大小:{}'.format(img.shape))

print("類型:%s"%type(img))

print(img)

運(yùn)行結(jié)果如下圖所示:

方法二:使用OpenCV,先讀取圖片,然后在轉(zhuǎn)換為灰度圖:

img = cv2.imread(imgfile)

#print(img.shape)

#print(img)

gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #Y = 0.299R + 0.587G + 0.114B

print("cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)結(jié)果如下:")

print('大小:{}'.format(gray_img.shape))

print("類型:%s" % type(gray_img))

print(gray_img)

運(yùn)行結(jié)果如下:

方法三:使用PIL庫(kù)中的Image模塊:

img = np.array(Image.open(imgfile).convert('L'), 'f') #讀取圖片,灰度化,轉(zhuǎn)換為數(shù)組,L = 0.299R + 0.587G + 0.114B。'f'為float類型

print("Image方法的結(jié)果如下:")

print('大小:{}'.format(img.shape))

print("類型:%s" % type(img))

print(img)

python 圖像灰度化怎么處理alpha 值

圖像的灰度處理:

CV_LOAD_IMAGE_GRAYSCALE,這是最簡(jiǎn)單之間的辦法,在加載圖像時(shí)直接處理

IplImage* Igray=cvLoadImage("test.jpg",CV_LOAD_IMAGE_GRAYSCALE);

得到的圖像就是單通道的,也能夠用這個(gè)函數(shù):CVAPI(void) cvCvtColor( const CvArr* src, CvArr* dst, int code );

code=CV_BGR2GRAY;

opencv還提供了非常多方式,我這邊就不一一舉例了。

數(shù)字圖像處理Python實(shí)現(xiàn)圖像灰度變換、直方圖均衡、均值濾波

import CV2

import copy

import numpy as np

import random

使用的是pycharm

因?yàn)樽罱戳恕躲y翼殺手2049》,里面Joi實(shí)在是太好看了所以原圖像就用Joi了

要求是灰度圖像,所以第一步先把圖像轉(zhuǎn)化成灰度圖像

# 讀入原始圖像

img = CV2.imread('joi.jpg')

# 灰度化處理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

第一個(gè)任務(wù)是利用分段函數(shù)增強(qiáng)灰度對(duì)比,我自己隨便寫了個(gè)函數(shù)大致是這樣的

def chng(a):

if a 255/3:

b = a/2

elif a 255/3*2:

b = (a-255/3)*2 + 255/6

else:

b = (a-255/3*2)/2 + 255/6 +255/3*2

return b

rows = img.shape[0]

cols = img.shape[1]

cover = copy.deepcopy(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

下一步是直方圖均衡化

# histogram equalization

def hist_equal(img, z_max=255):

H, W = img.shape

# S is the total of pixels

S = H * W * 1.

out = img.copy()

sum_h = 0.

for i in range(1, 255):

ind = np.where(img == i)

sum_h += len(img[ind])

z_prime = z_max / S * sum_h

out[ind] = z_prime

out = out.astype(np.uint8)

return out

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

在實(shí)現(xiàn)濾波之前先添加高斯噪聲和椒鹽噪聲(代碼來(lái)源于網(wǎng)絡(luò))

不知道這個(gè)椒鹽噪聲的名字是誰(shuí)起的感覺(jué)隔壁小孩都饞哭了

用到了random.gauss()

percentage是噪聲占比

def GaussianNoise(src,means,sigma,percetage):

NoiseImg=src

NoiseNum=int(percetage*src.shape[0]*src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

NoiseImg[randX, randY]=NoiseImg[randX,randY]+random.gauss(means,sigma)

if NoiseImg[randX, randY] 0:

NoiseImg[randX, randY]=0

elif NoiseImg[randX, randY]255:

NoiseImg[randX, randY]=255

return NoiseImg

def PepperandSalt(src,percetage):

NoiseImg=src

NoiseNum=int(percetage*src.shape[0]*src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

if random.randint(0,1)=0.5:

NoiseImg[randX,randY]=0

else:

NoiseImg[randX,randY]=255

return NoiseImg

covereqg = GaussianNoise(covereq, 2, 4, 0.8)

CV2.imwrite('covereqg.png', covereqg)

covereqps = PepperandSalt(covereq, 0.05)

CV2.imwrite('covereqps.png', covereqps)

下面開(kāi)始均值濾波和中值濾波了

就以n x n為例,均值濾波就是用這n x n個(gè)像素點(diǎn)灰度值的平均值代替中心點(diǎn),而中值就是中位數(shù)代替中心點(diǎn),邊界點(diǎn)周圍補(bǔ)0;前兩個(gè)函數(shù)的作用是算出這個(gè)點(diǎn)的灰度值,后兩個(gè)是對(duì)整張圖片進(jìn)行

#均值濾波模板

def mean_filter(x, y, step, img):

sum_s = 0

for k in range(x-int(step/2), x+int(step/2)+1):

for m in range(y-int(step/2), y+int(step/2)+1):

if k-int(step/2) 0 or k+int(step/2)+1 img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 img.shape[1]:

sum_s += 0

else:

sum_s += img[k][m] / (step*step)

return sum_s

#中值濾波模板

def median_filter(x, y, step, img):

sum_s=[]

for k in range(x-int(step/2), x+int(step/2)+1):

for m in range(y-int(step/2), y+int(step/2)+1):

if k-int(step/2) 0 or k+int(step/2)+1 img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 img.shape[1]:

sum_s.append(0)

else:

sum_s.append(img[k][m])

sum_s.sort()

return sum_s[(int(step*step/2)+1)]

def median_filter_go(img, n):

img1 = copy.deepcopy(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = median_filter(i, j, n, img)

return img1

def mean_filter_go(img, n):

img1 = copy.deepcopy(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = mean_filter(i, j, n, img)

return img1

完整main代碼如下:

if __name__ == "__main__":

# 讀入原始圖像

img = CV2.imread('joi.jpg')

# 灰度化處理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

rows = img.shape[0]

cols = img.shape[1]

cover = copy.deepcopy(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

covereqg = GaussianNoise(covereq, 2, 4, 0.8)

CV2.imwrite('covereqg.png', covereqg)

covereqps = PepperandSalt(covereq, 0.05)

CV2.imwrite('covereqps.png', covereqps)

meanimg3 = mean_filter_go(covereqps, 3)

CV2.imwrite('medimg3.png', meanimg3)

meanimg5 = mean_filter_go(covereqps, 5)

CV2.imwrite('meanimg5.png', meanimg5)

meanimg7 = mean_filter_go(covereqps, 7)

CV2.imwrite('meanimg7.png', meanimg7)

medimg3 = median_filter_go(covereqg, 3)

CV2.imwrite('medimg3.png', medimg3)

medimg5 = median_filter_go(covereqg, 5)

CV2.imwrite('medimg5.png', medimg5)

medimg7 = median_filter_go(covereqg, 7)

CV2.imwrite('medimg7.png', medimg7)

medimg4 = median_filter_go(covereqps, 7)

CV2.imwrite('medimg4.png', medimg4)

'求助'Python怎么判斷圖片是否為灰度圖

不知道是搜索方法的問(wèn)題還是自己不愿意看文檔的問(wèn)題,

總之本來(lái)想在Python的標(biāo)準(zhǔn)庫(kù)里面找到一個(gè)可以判斷是否為灰度圖的標(biāo)準(zhǔn)庫(kù)函數(shù),

但是死活找不到,當(dāng)新問(wèn)題的難度比舊問(wèn)題難時(shí),果斷回來(lái)解決舊問(wèn)題,

那就是自己編寫一個(gè),效率問(wèn)題嘛,還是忽略一下,不考慮了

參考 怎么讀取每個(gè)像素的RGB

這里判斷是否為灰度圖的標(biāo)準(zhǔn)是:每一個(gè)像素所對(duì)應(yīng)的R、G、B的值是否相等。

網(wǎng)站欄目:python灰度函數(shù),python 灰度圖
網(wǎng)站網(wǎng)址:http://chinadenli.net/article18/heoodp.html

成都網(wǎng)站建設(shè)公司_創(chuàng)新互聯(lián),為您提供建站公司商城網(wǎng)站企業(yè)建站手機(jī)網(wǎng)站建設(shè)App設(shè)計(jì)

廣告

聲明:本網(wǎng)站發(fā)布的內(nèi)容(圖片、視頻和文字)以用戶投稿、用戶轉(zhuǎn)載內(nèi)容為主,如果涉及侵權(quán)請(qǐng)盡快告知,我們將會(huì)在第一時(shí)間刪除。文章觀點(diǎn)不代表本網(wǎng)站立場(chǎng),如需處理請(qǐng)聯(lián)系客服。電話:028-86922220;郵箱:631063699@qq.com。內(nèi)容未經(jīng)允許不得轉(zhuǎn)載,或轉(zhuǎn)載時(shí)需注明來(lái)源: 創(chuàng)新互聯(lián)

小程序開(kāi)發(fā)